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Subspace Methods for Robot Vision

Shree K. Nayar, Sameer A. Nene, and Hiroshi Murase

Abstract—In contrast to the traditional approach, visual recognition
is formulated as one of matching appearance rather than shape. For
any given robot vision task, all possible appearance variations define
its visual workspace. A set of images is obtained by coarsely sampling
the workspace. The image set is compressed to obtain a low-dimensional
subspace, called the eigenspace, in which the visual workspace is repre-
sented as a continuous appearance manifold. Given an unknown input
image, the recognition system first projects the image to eigenspace. The
parameters of the vision task are recognized based on the exact location
of the projection on the appearance manifold. An efficient algorithm for
finding the closest manifold point is described. The proposed appearance
representation has several applications in robot vision. As examples, a
precise visual positioning system, a real-time visual tracking system, and
a real-time temporal inspection system are described.

Index Terms—Visual workspace, parametric eigenspace representation,
learning appearance manifolds, image recognition, nearest neighbor,
visual positioning, real-time tracking, temporal inspection.

I. INTRODUCTION

For a robot to be able to interact in a precise and intelligent manner
with its environment, it must rely on sensory feedback. Vision serves
as a powerful component of such a feedback system. It provides
a richness of information that can enable a manipulator to handle
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uncertainties inherent to a task, react to a varying environment, and
gracefully recover from failures. In order for the robot to interact
with objects in its workspace, it requires a-priori models of the
objects. Traditionally, robot vision systems have heavily relied on
shape (CAD) models [4].

Will shape representation suffice? After all, most vision appli-
cations deal with brightness images that are functions not only of
shape but also other intrinsic scene properties such as reflectance and
perpetually varying factors such as illumination. This observation has
motivated us to take an extreme approach to visual representation.
What we seek is not a representation of geometry but rather ap-
pearance [20], encoded in which are brightness variations caused by
three-dimensional shape, surface reflectance properties, illumination
conditions, and the parameters of the robot task. Given the number
of factors at work, it is immediate that an appearance representation
that captures all possible variations is simply impractical. Fortunately,
there exist a wide collection of robot vision applications where perti-
nent variables are few and hence compact appearance representation
in a low-dimensional subspace is indeed practical.

A problem of substantial relevance to robotics is visual servoing;
the ability of a robot to either automatically position itself at a desired
location with respect to an object, or accurately follow an object as
it moves through an unknown trajectory. We use the visual servoing
problem to describe our appearance based approach. To place our
approach in perspective, we review existing methods for servoing.
All of these methods can be broadly classified into two categories;
(a) feature/model based and (b) learning based. The first category uses
image features to estimate the robot’s displacement with respect to the
object. The objective is to find the rotation and translation that must be
applied to the end-effector to bring the features back to their desired
positions in the image. Image features used vary from geometric
primitives such as edges, lines, vertices, and circles [331], [5], [10}, [7]
to optical flow estimates [26], [13], [3] and object location estimates
obtained using stereo (2]. The control schemes used to drive the
robot to its desired position vary from simple prediction algorithms
employed to achieve computational efficiency to more sophisticated
adaptive self-tuning controllers that account for the dynamics of the
manipulator. Many of the above methods require prior calibration of
the vision sensor’s intrinsic parameters (e.g., focal length) as well as
its extrinsic parameters (e.g., rotation and translation with respect to
the manipulator).

The second category of servoing methods includes a learning
component. In the learning stage, the mapping between image features
and robot coordinates is generated prior (off-line) to positioning
or tracking. This mapping is then used to determine, in real-time,
errors in robot position/velocity from image feature coordinates. This
is generally accomplished without any explicit knowledge of the
object’s geometry or the robot’s kinematic parameters. In addition,
calibration of the vision sensor is not required as long as the sensor-
robot configuration remains unaltered between learning and servoing.
These methods differ from each other primarily in the type of
learning algorithm used. The learning strategies vary from neural-
like networks [11], {141, [17], [32] to table lookup mechanisms such
as the cerebellar model articulation controller (CMAC) [1], [16].

Our appearance based approach to robot vision offers a solution to
servoing that differs from previous work in two significant ways;
(a) the method uses raw brightness images directly without the
computation of image features, and (b) the learning algorithm is
based on principal component analysis {25], [6] rather than a large

1042-296X/96305.00 © 1996 IEEE
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input/output mapping network. During the learning stage, a sizable
image window is selected that represents the appearance of the object
when the robot is in the desired position. A large set of object images
is then obtained by incrementally displacing the robot’s end-effector
(hand-eye system). Since all images in the set are of the same object,
consecutive images tend to be strongly correlated. This allows us to
compress the image set using principal component analysis to obtain a
low-dimensional subspace, called the eigenspace. Variations in object
images due to robot displacements are represented in the form of a
parametrized manifold in eigenspace. The manifold is a continuous
representation of what we refer to as the visual workspace of the task
(servoing, in this case).

During visual positioning or tracking, each new image is projected
to the eigenspace and the location of the projection on the parame-
trized manifold determines the robot displacement (error) with respect
to the desired position. An efficient algorithm for finding the closest
manifold point in eigenspace is described. It is worth emphasizing that
positioning and tracking are achieved without prior knowledge of the
object’s geometry or reflectance, the robot’s kinematic parameters,
and the vision sensor’s parameters. Several servoing experiments are
conducted using a hand-eye system mounted on an Adept robot. The
results demonstrate high performance in both accuracy and speed. To

monstrate the scope of the subspace approach, we introduce a new

\fechnique called temporal visual inspection. The hand-eye system is
swept over a complex manufactured part to acquire an appearance
manifold (model) of the part that is parametrized by travel time.
During inspection, images of a novel part are projected to eigenspace
and compared in real-time with the model manifold.

Our experimental results demonstrate that the techniques under-
lying appearance modeling and matching are general. This has
led to the development of a comprehensive software package [23]
for appearance matching called SLAM!'. Several extensions to the
methods presented in this paper are discussed in [22].

II. APPEARANCE BASED APPROACH

Fig. 1 shows the hand-eye system we have used to implement
positioning, tracking and inspection. The manipulator used is a 5
degree-of-freedom Adept robot that is interfaced with a workstation.
A CCD camera is mounted adjacent to the robot gripper and provides
images of the object. We define the variables of a vision task as
the visual degrees of freedom (DOF), q = [q1,¢2. . . .. qm]T, where,
m represents the manipulator’s degrees of freedom (DOF) used in

e task at hand. To describe the basic principles underlying the

“'subspace based approach, we shall use visual servoing as the task of
interest. The imaging optics is selected such that the tracked object
occupies a large section of the image. The image area used as visual
input is a large fixed window, within the complete image, which
includes sufficient object detail as shown in Fig. 2(a). Alternatively,
as illustrated in Fig. 2(b), the contents of several windows of fixed
sizes and shapes that are scattered in the image can be concatenated
and treated as a single visual input. The positions, shapes, and sizes
of the these windows are selected to ensure that the visual input is
descriptive and is sensitive to variations in the DOF q. This visual
input, also referred to as appearance, is a vector i = [i1, i2,....in]"
obtained by reading brightness values from the selected window (or
set of windows) in a raster scan fashion.

The visual appearance i for any given robot position q depends on
the three-dimensional shape of the object, its reflectance properties,
the illumination conditions, and the robot coordinates with respect to
the object. Shape and reflectance are intrinsic properties of a rigid

!Information on the SLAM software package can be obtained by sending
a query to slam@cs.columbia.edu.

Ropgee =

Fig. 1. The hand-eye system used for visual positioning, tracking and
inspection. The end-effector includes a gripper and an image sensor. In
applications where ambient lighting is not diffuse, a light source may be
mounted on the end-effector to achieve illumination invariance.

object that do not change during a task. In order to avoid possible
variations in illumination, we have used a light source that is also
mounted on the end-effector. In our setup (see Fig. 1), the source
is one end of a fiber-optic cable connected to a strong light source
at the other end. This hand-source is the dominant source of object
illumination. Further, since the source and sensor directions are fixed
with respect to one another, the appearance of an object depends only
on its position and orientation with respect to the end-effector and not
its position and orientation in the manipulator’s workspace. Placing
the source close to the sensor also minimizes shadows in the image.

Industrial tasks often involve smooth objects that produce strong
specular reflections in the image. Specular highlights can be used to
our advantage as they cause the visual input vector i to be sensitive
to object pose. However, they are often a curse as they produce
undesirable effects such as image saturation. In such cases, two cross-
polarized filters can be used, one in front of the source and the other
the sensor. This causes the illumination of the scene to be linearly
polarized. Since specular reflections tend to preserve the polarization
characteristics of the incident light, they are blocked by the cross-
polarized filter appended to the sensor [15]. Diffuse reflections, on the
other hand, tends to be unpolarized even under polarized illumination
and hence are allowed to pass through to the sensor. The result is an
image that is more or less devoid of specularities.

Simple normalizations can be applied to the input vector i to
enhance the robustness of visual processing.” It is desirable that object
appearance be unaffected by variations in the intensity of the hand-
source or the aperture of the imaging system. This can be achieved by
normalizing each acquired image such that the total energy contained
within is unity

i =L/

Having taken care of illumination variations, we are left with the
coordinates q of the end-effector with respect to the object. Judicious
selection of the image windows can ensure that the each task

21n the case of object recognition, each object region is segmented from the
scene and scale normalized [20] to fit a predetermined image size. This ensures
that the recognition system is invariant to magnification, i.e., the distance of
the object from the image sensor.
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(a)
Fig. 2.

(b)

(a) Each image vector i is obtained by reading pixel brightness values from a large image window (box) of fixed size and position. (b) Alternatively,

the contents of several windows of fixed sizes and shapes, scattered in the image, can be concatenated and treated as a single image vector.

coordinate q produces a unique visual appearance i.Ina given
application, q has lower and upper bounds and its continuous set
of values within these bounds map to a continuous domain of images
i(q). This range of appearances is what we refer to as the visual
workspace of the task. Our approach is to acquire an image set by
coarsely sampling the visual workspace and then produce a compact
subspace representation of the image set that can be used not only to
recognize the discrete appearances in the image set but also those that
lie in between the ones in the set, i.e., a continuous representation of
the entire visual workspace. We show that once such a representation
is computed, the task coordinates q can be efficiently determined for
any visual input i

Several advantages result from the above approach. (a) In contrast
to popular CAD model based techniques, the three-dimensional
shape and reflectance properties of the object need not be known
or computed. The effects of shape and reflectance are embedded
in the raw brightness images i. (b) The task coordinates q are
computed using images rather than image features. This not only
saves computations but also avoids detection and localization errors
introduced by feature extraction algorithms. (¢) The extrinsic and
intrinsic parameters of the camera are not used. It is only required
that the camera parameters remain unchanged between the stages
of learning and using the visual workspace. Therefore, it is not
necessary to calibrate the camera with respect to the hand or any
other coordinate system, a process that is known to be cumbersome.

III. LEARNING THE VISUAL WORKSPACE

For any given application, the visual workspace is coarsely sampled
by varying the task DOF q in increments. This sampling may be
uniform or nonuniform. To ensure high accuracy, one may choose
a sampling frequency that increases as q approaches the desired
coordinate. Let the number of discrete samples obtained for each
degree of freedom ¢; be R,. Then the total number of images acquired
is M = [[”, R;. The complete image set is

(i 2. dar) (D

Note that the input vectors i ;j represent unprocessed (barring possible
scale and brightness normalizations) brightness images. Alternatively,
processed images such as smoothed images, image derivatives, or
even the power spectrum of each image may be used. In applications

that employ depth sensors, the inputs could be range maps. Here, for
the purpose of description we use raw brightness images, bearing in
mind that visual workspaces can in principle be constructed for any
image type.

A. Computing Subspaces

Images in the set tend to be correlated to a large degree since
visual displacements between consecutive images are small. The
obvious step is to take advantage of this redundancy and compress
the large set to a low-dimensional representation that captures the
key appearance characteristics of the visual workspace. A suitable
compression technique is based on principal component analysis
[25], [6] where the eigenvectors of the image set are computed and
used as orthogonal bases for representing individual images. Principal
component analysis has been previously used in computer vision for
deriving basis functions for feature detection [9], [12] representing
human face images [30] and recognizing face images [31], [27].
Though, in general, all the eigenvectors of an image set are needed
for perfect reconstruction of any particular image, only a few are
sufficient for visual recognition. These eigenvectors constitute the
dimensions of an image subspace, called the eigenspace, in which
the visual workspace is compactly represented.

First, the average c of all images in the set is subtracted from each
image. This ensures that the eigenvector with the largest eigenvalue
represents the subspace dimension in which the variance of images
is maximum in the correlation sense. In other words, it is the
most important dimension of the eigenspace. An image matrix is
constructed by subtracting ¢ from each image and stacking the
resulting vectors column-wise

P2{i,—ciy—c....ix—c). )

Pis .V x M, where .V is the number of pixels in each image and M
is the total number of images in the set. To compute eigenvectors of
the image set we define the covariance matrix

Qa2pp’. (3)

Q is .V x .V, clearly a very large matrix since a large number of
pixels constitute an image. The eigenvectors e and the corresponding
eigenvalues A, of Q are determined by solving the well-known
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eigenstructure decomposition problem
/\kek = Qek. (4)

Calculation of the eigenvectors of a matrix as large as Q is computa-
tionally intensive. Fast algorithms for solving this problem have been
a topic of active research in the area of image coding/compression and
pattern recognition. We have summarized a few of the representative
algorithms in [20]. In our experiments, we have used a fast imple-
mentation [23] of the algorithm proposed by Murakami and Kumar
[18]. On a Sun IPX workstation, for instance, 20 eigenvectors of a set
of 100 images (each 128 x 128 in size) can be computed in about 3
minutes, and 20 eigenvectors of a 1000 image set in less than 4 hours.
Workstations are fast gaining in performance and these numbers are
expected to diminish with time.

The result of eigenstructure decomposition is a set of eigenvalues
{Ae | K = 1,2,....K} where {\y > A\ > > Ax},
and a corresponding set of orthonormal eigenvectors {ex | k =
1,2....,K}. Note that each eigenvector is of size V, i.e., the size
of an image. These L\’ eigenvectors constitute our eigenspace; it is
an approximation to a complete Hilbert space with NV dimensions.
Pattern recognition theory suggests several criteria for selecting K
-iven the covariance matrix Q [25]. In all of our applications, we

_ 1ve found eigenspaces of 20 or less dimensions to be more than
adequate.

B. Parametric Eigenspace Representation

Each workspace sample i,‘ in the image set is projected to
eigenspace by first subtracting the average image ¢ from it
and finding the inner product of the result with each of the
K eigenvectors. The result is a point f; in eigenspace, where
f; = [e1,ea..... ex]7(i; — ¢). By projecting all images in this
manner, a set of discrete points is obtained. Since consecutive
images are strongly correlated, their projections are close to one
another. Hence, the discrete points obtained by projecting all the
samples of the workspace can be assumed to lie on a manifold that
represents a continuous appearance function. The discrete points are
interpolated to obtain this manifold. In our implementation, we have
used a standard quadratic B-spline interpolation algorithm [29]. The
resulting manifold can be expressed as f(q) = f(q1,42,....9m)-
It resides in a low-dimensional space and therefore is a compact
representation of the visual workspace, i.e. appearance as a function
of the task DOF q. The exact number of task DOF is of course

splication dependent. The above representation is called the

~parametric eigenspace. It was initially introduced in [19], [20] for
real-time recognition and pose estimation of 3D objects.

It is worth pointing out that multiple visual workspaces can
be represented in the same eigenspace as set of manifolds F' =
{fr.£2%..... fP}. In this case, the eigenspace is computed using
image sets of all the visual workspaces. Multiple workspaces are
used for example when a tracking application involves more than
one object and requires the robot to switch and track an object whose
appearance most closely matches the visual input.

It is well-known in pattern recognition theory [25], [20] that the
distance between the two points in eigenspace is an approximation to
the correlation between the two images. The closer the projections,
the more similar are the images in I°. The eigenspace is the optimal
subspace for computing correlation between images. It is this property
that motivates us to use principal component analysis to represent
the visual workspace.

IV. IMAGE RECOGNITION

Our goal here is to develop an efficient method for recognizing an
unknown input image i. and find the corresponding task parameters

qc. Since the eigenspace is the optimal subspace for computing the
correlation between images, we can project the current image to
eigenspace and simply look for the closest point on the workspace
manifold. Image recognition proceeds as follows. We will assume
that i. has already been normalized in scale and brightness to suit the
invariance requirements of the application. The average ¢ of the visual
workspace is subtracted from ic and the resulting vector is projected
to eigenspace to obtain the point, f. = [e;. e2,...,ex]’ (i.—c). The
matching problem then is to find the minimum distance d between
f. and the manifold f{q)

d = min||f; — f(q)|]. &)
q

If d is within some pre-determined threshold value (selected based
on the noise characteristics of the image sensor), we conclude that ic
does belong to the manifold f, i.e., the input image is within the visual
workspace. Then, parameter estimation is reduced to finding the
coordinate q. on the manifold corresponding to the minimum distance
d. In practice, the manifold is stored in memory as a list of i'-
dimensional points obtained by densely re-sampling f(q). Therefore,
finding the closest point to f. on f(q) (or even a set of manifolds,
F) is reduced to the classical nearest-neighbor problem.

V. FINDING THE CLOSEST MANIFOLD POINT

Mapping a novel input image to eigenspace is computationally
simple. As mentioned earlier, the eigenspace is typically less than
20 in dimensions. The projection of an input image to a 20D
space requires 20 dot products of the image with the orthogonal
eigenvectors that constitute the space. This procedure can easily be
done in real-time (frame rate of a typical image digitizer) on almost
any general purpose workstation. What remains to be addressed is an
efficient way of finding the closest manifold point.

We have implemented an efficient technique for binary search in
multiple dimensions [24]. This algorithm uses a carefully designed
data structure to facilitate quick search through the multi-dimensional
eigenspace in O(k log, n), where n is the number of manifold points
and K is the dimensionality of the eigenspace. In [24], code for the
above algorithm is outlined and its performance is compared with
those of other popular algorithms.

VI. VISUAL POSITIONING

Consider the problem of chip insertion on a circuit board (see
Fig. 3). In most assembly lines, one can expect uncertainties in the
positions of the manipulator, circuit board, and the chip holder. Visual
positioning can play the critical role of forcing the manipulator to a
desired position before the task of chip insertion is executed. One
approach would be to compute geometric features such as corners
and lines and match these features with a pre-stored geometric model
of the circuit board.Then, the pose of the chip holder with respect
to the manipulator needs to be computed before positioning can be
executed. This is known to be difficult since precise feature detection
and localization remain unresolved problem.

Our appearance based approach allows us to circumvent the need
for precise feature detection and matching. In fact, it enables us to use
substantially more information than just image discontinuities caused
by features. It also captures pertinent visual cues such as shading. The
visual workspace is defined as a range of possible appearances that
result from deviations of the end-effector from the desired position
with respect to the object. This workspace is learned off-line. During
execution, a visual input corresponding to the present location of the
end-effector is simply projected to eigenspace and its position on the
workspace manifold reveals the displacement of the end-effector from
its desired location. This information is fed to the robot controller to
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Fig. 3. Visual positioning experiment: printed circuit board. (a) Image window used for learning and positioning; (b) Parametric eigenspace representation
of visual workspace displayed in 3D. Displacements are in two dimensions (z and y). Histograms of absolute positioning error (in mm) for (c) 256

learning images and (d) 441 learning images.

achieve accurate positioning. Then, the robot task is executed, in this
case, insertion of the chip.

All our experiments were conducted using the Adept robot and
hand-eye system shown in Fig. 1. The box shown in Fig. 3(a) is the
image area (128 x 128 pixels) used for learning and positioning. Note
that the image is rather complex and includes a variety of subtle
features. In this experiment, robot displacements were restricted to
two dimensions (r and y). A total of 256 images were taken by
moving the robot to 16 x 16 equally spaced discrete points within a
2 c¢m x 2 cm region around the desired position. A 15D (A" = 15)
eigenspace was computed using the 256 images. Each workspace
sample was then projected to eigenspace and the 256 resulting
points were interpolated to obtain a manifold with two parameters,
namely, = and y. Since we are unable to display the manifold in
15D eigenspace, we have shown it (see Fig. 3(b)) in a 3D space
where the dimensions are the three most prominent eigenvectors
of the eigenspace. The complete learning process, including image
acquisition, eigenspace computation and manifold interpolation, took
approximately 11 minutes on a Sun IPX workstation. The workspace
manifold is stored in memory as a set of 251 x 231 = 063001
points obtained by resampling the continuous manifold. A robot
displacement (r. y) is stored with each manifold point.

Next, the accuracy of the positioning algorithm was tested. In these
experiments, the robot was displaced by a random distance from its

desired position. The random positions were uniformly distributed
within the 2 cm. x 2 cm. region used for learning. Note that these
positions are generally not the same as any of the workspace samples
used for learning. The positioning algorithm was then used to estimate
the robot’s displacement from its desired position. This process was
repeated 1000 times, each time computing the Euclidean distance
(error) between the robot location after positioning and the desired
location. A histogram of positioning errors is shown in Fig. 3(c). The
average of the absolute positioning error is 0.676 mm and standard
deviation is 0.693 mm. The positioning accuracy was dramatically
improved by simply using a larger number of learning images.
Fig. 3(d) shows the error histogram for 21 x 21 = 441 learning
images obtained within the same 2 cm X 2 cm displacement region.
In this case, the learning process was completed in approximately 30
min. The average absolute error was found to be 0.151 mm and
standard deviation 0.107 mm. This reflects very high positioning
accuracy, sufficient for reliable insertion of a circuit chip into its
holder. This task was in fact accomplished with high repeatability
using the gripper of the hand-eye system.

Similar experiments were conducted for the object shown in
Fig. 4(a). In this case, three displacement parameters were used,
namely, z. y, and 8 (rotation in the x-y plane). During learning,
the & and y parameters were each varied within a 1 cm range
while # within a £10° range for each (&, y) displacement. A total
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of 11 x 11 x 11 = 1331 learning images were obtained and a
5D eigenspace computed. The visual workspace representation in
this case is a three-parameter manifold in 5D space. In Fig. 4(b)
a projection of this manifold is shown as a surface (¢ and y are the
parameters, while # = 0) in 3D. The actual manifold is stored in
memory as a set of 65 x 65 x 65 = 274625 points. In this case, the
ire learning process took approximately 5 hours. Once again, 1000
~—idom displacements were used in the positioning experiments. The
absolute Euclidean positioning errors in -y space are illustrated by
the histogram in Fig. 4(c). An average absolute error of 0.291 mm
and standard deviation of 0.119 mm were computed. The absolute
errors for # were computed separately and found to have a mean
value of 0.56° and deviation of 0.45°. These results again indicate
high positioning accuracy. Fig. 4(d) shows that positioning accuracy
is only marginally improved for this particular object by doubling
the eigenspace dimensions. The positioning errors in this case have
a mean of 0.271 mm and deviation of 0.116 mm, and the angular
errors a mean of 0.44° and deviation of 0.33°. This accuracy was
verified by successful insertions of a peg in the hole of the object.

VII. REAL-TIME TRACKING

The visual processing aspects of tracking are identical to that
of positioning. In tracking applications successive images may be
assumed to be close to one another as the manipulator is in the
process of tracking the object and hence always close to the desired
position. This implies that fewer learning samples are generally

y, #). Histograms of absolute positioning error (in mm) for (c) 5D eigenspace and (d) 10D eigenspace.

needed. For any new image acquired, the positioning algorithm is
used to determine the error q. in robot coordinates. This error may
be used as input to a position control system. The control law may
vary from a simple PID controller to more sophisticated adaptive
controllers that incorporate the dynamics of the manipulator as well as
delays introduced by the visual processing. The control law we have
used is based on a simple interpolation/prediction scheme to facilitate
smooth manipulator motion. The controller generates a reference
point q, for the low-level robot actuators.

Fig. 5(a) shows an object we have used to test the tracking
algorithm. The box illustrates the 96 x 96 pixel image region used
for leaming and tracking. As in the previous experiment, robot
displacements were confined to three dimensions (x, y, 8). A total
of 13 x 13 x 13 = 2197 images were acquired during the learning
stage by using robot displacements within x = £1 cm, y = %1
cm, § = £10°. A 10D eigenspace was used to represent the three-
parameter manifold. A projection of the manifold (using § = 0)
is shown in 3D in Fig. 5(b). Each cycle of the tracking algorithm
involves the digitization of an input image, transfer of image data
from the digitizer to the workstation, projection of the input image
to eigenspace, search for the closest manifold point, computation of
reference coordinates using a control law, and communication of the
reference coordinates to the robot controller.

The tracking accuracy was determined by moving the object at
known velocity along a circle using a motorized tumtable (Fig. 5(a)).
The turntable was rotated through 90°, moving the object through
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Fig. 5. Visual tracking experiment: moving electric socket. (a) The black box in the inset is the image window used. (b) Workspace manifold in eigenspace.

Desired and actual coordinates: (¢) r(t), (d) y{t), and (e) 8(t). (f) Tracking distance error d(t).

a total distance of 19 cm. In Figs. 5(c)—~(e), the desired and actual
coordinates of the robot are plotted as a function of time. The
deviations and lags that result while tracking are attributed mostly to
delays introduced by the viston computations and the simple control
scheme used.

In this experiment, all computations were done on a Sun IPX
workstation without the use of any customized image processing

hardware. The total cycle time was approximately 250 msec yielding
a control rate of 4 Hz. This restricted us to objects moving at relatively
slow speeds (approximately 0.5 cm/sec). It may be noted that this is
merely a limitation of the implementation. All computations involved
in the visual processing are simple and can be easily done at
frame-rate (30 Hz) with a single frame-time delay using inexpensive
image processing hardware (such as a standard i860 board). In other
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Fig. 6. Temporal inspection experiment: modem circuit board. (a) The white box indicates the image window used and the white curve represents the visual
trajectory traversed by the hand-eye system. (b) The workspace manifold in this case is the temporal appearance of the model circuit board parametrized by
time t. (¢) A modem circuit board with three missing components (visual defects indicated as A4, B, and C). (d) Distance between eigenspace projections

of the model and defective boards plotted as a function of time.

~&«periments reported in {22], a significant improvement in tracking
speed was achieved using a DEC Alpha workstation.

VIII. TEMPORAL INSPECTION

We conclude with one last application of the appearance based
approach, namely, inspection of manufactured parts. Consider the
case of a fairly complex product such as the chassis of an automobile
engine. Our objective is to visually scan the product (object) with
the hand-eye system and in real-time determine whether all its
components are in place. It is assumed that the reference coordinates
of the object are either known a-priori or determined using the
positioning algorithm described in Section VI. The parameters of
the imaging optics (magnification, aperture, etc.) of the hand-eye
system are selected by the user so as to ensure that pertinent visual
characteristics, such as defects, of the object are clearly imaged. The
hand-eye system is then swept along a fixed trajectory that encertains
that the visual input window passes over all the relevant parts of the
object. This trajectory again is chosen by the user and can involve the
variation of any number of end-effector coordinates in any sequence.

Using a motorized imaging lens, the optical parameters can also
be varied over the trajectory enabling the sensor to capture visual
features at varying resolutions.

The end result of this scanning process is a sequence of images
that are taken sequentially with time. The parametric eigenspace
representation in this case is a single continuous curve that is
parametrized by time rather than end-effector coordinates. This curve
is a temporal appearance representation that is the model against
which all manufactured products are to be compared. Given a new
instance of the product, the hand-eye system is run through the
same trajectory and the visual inputs are in real-time projected to
eigenspace and compared to their corresponding points on the model
curve. Note that the hand-eye travel time ¢ is always known and it
determines the corresponding point on the model curve. Therefore, in
this particular application, the problem of finding the closest manifold
point is obviated. The distance d between a projected point and
its temporally corresponding model point determines whether the
projected image has a defect. The time a defect is detected reveals its
location on the fixed trajectory. Note that this approach detects only
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defects in the correlation sense. However, once the defect images
have been identified and separated from the entire sequence, these
images can be further analyzed, perhaps using traditional feature
based approaches, to determined the exact nature of the defect.

We have tested this idea of temporal inspection on a variety
of complex parts. Fig. 6 demonstrates the reliability and real-time
performance of our temporal inspection algorithm when applied to
the circuit board of a modem. As is evident from Fig. 6(a), the board
is very complex in appearance, including a variety of electronic
devices. The image window and trajectory used are also shown.
The entire trajectory, which includes a few hand-eye rotations, is
traversed with high repeatability in a total of 30 s. The appearance
representation of the model circuit board, parametrized by travel
time ¢, is shown in Fig. 6(b). In Fig. 6(c), a modem with three
missing components (marked 4. B, and C') is shown. The inspection
algorithm was executed for this defective board and the results are
shown in Fig. 6(d), which shows the distance in eigenspace between
the novel and model boards plotted as a function of travel time. As
seen from the figure, the distance is close to zero in all parts of
the trajectory except where the defects pass through the visual input
window. From this distance function, the three defects are easily
identified by using an error threshold.
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