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Abstract

This paper describes a new method to calculate the spatio-temporal correlation efficiently in a parametric eigenspace
representation for moving object recognition. A parametric eigenspace compactly represents the temporal change of an
image sequence by a trajectory in the eigenspace. This representation reduces the computational cost of correlation-based
comparison between image sequences. Experiments for human gait analysis and lip reading show this method is

computationally useful for motion analysis and recognition.
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1. Introduction

Motion analysis is one of the most active and
challenging research areas in computer vision. Many
of the goals are tracking the moving objects or
recovering the 3D objects (Aggarwal and Nandhaku-
mar, 1986) using optical flow or feature correspon-
dence. In this field, the automatic interpretation of
human movement from an image sequence has been
gaining more attention, because it has a variety of
applications, such as individual recognition, gesture
recognition, and lip reading (Niyogi and Adelson,
1994; Murase, 1992; Bregler and Konig, 1994; Del
Bimbo and Nesi, 1992; Rohr, 1993).

Some recognition methods used the fact that the
human body consists of body parts linked to each
other at joints (for example, Rohr, 1993; Del Bimbo
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and Nesi, 1992); however, these methods require
structure models, which should be changed depend-
ing on the application. An alternative is to consider
the property of the spatio-temporal pattern as a whole.
For example, Niyogi and Adelson (1994) used the
spatio-temporal edge of the body boundary in
spatio-temporal volume, and Murase (1992) pro-
posed the method which observes the silhouette
movements of the object in specific feature extrac-
tion windows. However, this feature-based method is
also specific to the application, because the program-
mer should design the apropriate features for a spe-
cific set. Moreover, features, such as edges, corners,
or boundaries cannot be easily extracted from noisy
images. Thus, feature-based methods may have some
limitation in application.

Polana and Nelson (1993) looked at spatio-tem-
poral Fourier transforms in order to classify activi-
ties. Such an approach probably has the strength to
reduce noise; however, the low-frequency compo-
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nents do not efficiently represent the original pat-
terns. Another simple method is template matching
(e.g., spatio-temporal image correlation). It is appli-
cable to various object sets, and is reasonably robust
to small noise. The calculation time, however, in-
creases quickly if comparison is performed in a

spatio-temporal domain, especially when time-axis
stretching is taken into account.

This paper proposes the parametric eigenspace
representation for efficient image sequence compari-
son. We apply this idea to the recognition of people
by their walk and to the lip reading problem. The
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Fig. 1. (a) The original image. (b) The subtracted image followed by binarization. A lot of noise occurs. {c) A noise-reduced image from (b)

using smooth filtering. (d) Changes in the gait pattern.



H. Murase, R. Sakai / Pattern Recognition Letters 17 (1996) 155162 157

eigenspace representation can represent pattern sets
more efficiently than the Fourier representation, and
it has been applied for face recognition (Sirovich and
Kirby, 1987; Turk and Pentland, 1991), character
recognition, etc. (Fukunaga, 1990; Press et al., 1988).
Especially the parametric eigenspace representation,
which represents a variety of images using a mani-
fold in the eigenspace, can be used for a wide range
of applications such as object recognition, object
extraction, object tracking, and illumination planning
(Murase and Nayar, 1994, 1995; Nayar et al., 1994).
We extend this idea to image sequence recognition.

We first address the problem of individual recog-
nition using motion information. This type of prob-
lem must be solved in order to build security or other
systems that can find a particular person in a crowd.
The precision of individual recognition increases
when we use a combination of information about the
person’s face, build, and other factors. Motion infor-
mation is one of the good cues to recognize individu-
als. Psychological experiments show that people’s
gaits contain much information about them. For ex-
ample, results of a psychological experiment using
an MLD (Moving Light Display) show it is possible
for humans to identify an individual from paths of
lights when a person walks with lit bulbs on his
hands and feet (Cutting and Kozlowski, 1977). We
show that gait analysis can also be used in a machine
recognition of an individual.

Some feature-based recognition methods that ex-
tract the boundaries or edges of a figure have been
proposed for gait analysis (Niyogi and Adelson,
1994; Murase, 1992). In gait analysis with the para-
metric eigenspace representation, however, a special
feature extraction is not used. Our method is similar
to spatio-temporal image correlation, but, using the
eigenspace reduces calculations and provides more
robustness to noise because of the effective represen-
tation of movement. The recognition process is com-
posed of three steps: making a sequence of silhouette
images by extracting a walking person from the
background, projecting the images to the eigenspace,
and comparing the images with reference patterns in
a database.

This method is a general algorithm for moving
object recognition, so it can be applied to many
problems. We show our method is also applicable to
lip reading, which is important because research has

shown that efficient lip reading increases the voice
recognition precision (Bregler and Konig, 1994).

2. Extracting a gait from the background

We assume that (i) individuals are walking fron-
toparallel to the camera with a fixed background, and
(ii) the body is not occluded. This situation can be
easily realized by setting a camera in a proper posi-
tion. To extract a person area from the background,
we can simply take subtraction of two images. The
difference between them will be a silhouette of a
person. Fig. 1(a) shows an example of an input
image, and Fig. 1(b) shows the difference pattern. A
lot of noise such as isolated spots or holes occur if
we use a simple extraction method like subtraction.
It is possible to eliminate small noises by applying
smooth filtering and thresholding; however it is not
necessary to remove all of them. Fig. 1(c) shows an
image where much of the noise has been removed by
smooth filtering. Template matching is not sensitive
to noise, so this silhouette pattern with some noise
was directly applied to the next step.

As a preliminary process, the position and size of
the silhouette are normalized to fit the input image
frame. The aspect ratio will be kept constant when
the size is normalized. Fig. 1(d) shows changes in
the gait pattern.

3. Spatio-temporal correlation

Image correlation is a well-know technique for
measuring the similarity of images in many practical
situations. Spatio-temporal correlation is an exten-
sion of 2-dimensional image correlation to 3-dimen-
sional correlation in the space and time domain. Let
an input image sequence be

T
x(t) =[x,(8), x,(£),.... xy(D)]
and a reference image sequence be

y(8) = [yi(8), y2(t)see e, yu (D]

Here, N is the number of pixels in an image. The
elements of these vectors are pixel values of the
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image at time ¢. Spatio-temporal correlation, ¢, can
be written

c=fT0x(t)Ty(t) dr.

=

If we consider time shifting and stretching, this
equation can be written

c=[tiox(t)Ty(w(t)) de,

where w(t) is the warp function, which is written
w(£)=ar+b in the case of time shifting and
stretching. Here, a and b in w(¢) depend on the
velocity change and phase difference, respectively,
for each observation. We assumed that the gait is
periodic and the velocity is not changed during the
observation.

The computational cost for correlation will be
high with changing values of a and b in w(¢) when
the size of images is large. It is possible to shorten
the computation time by an orthogonal transforma-
tion, which reduces the dimension of an input vector.
For example, the transformation using the eigenvec-
tor basis [e,, e,,..., €,] allows an input image and a
reference image to be approximated as k-dimen-

sional vectors, i.e., z(t)=[e,, e,,..., e, ]'x(¢) and
v(t)=[e,, e,,..., e,]"y(¢) respectively. Here, k <
N. The correlation is rewritten

c=f:0x(t)Ty(w(t)) dr
E'[tioz(t)T[el, ey...,e.]"
X[ey, ey,..., e ]v(w(t)) dt

f:oz(t)Tv(w(t)) de.

Thus, the computational cost will be reduced because
it is calculated in a lower-dimensional subspace.

It

4. Learning stage
4.1. Calculating eigenspace from silhouette images

An ith gait image of a person j at time ¢ is
represented as y,fj(t). First, the brightness of an
image is normalized by

¥ (1) =y,() /1y () Il

Fig. 2. The first six eigenvectors for gait pattern.
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The covariance matrix of an image set ¥, () is
represented by

I J T
0=L X X (3(0-)(0u(0-3),

where y is the mean vector for y,(t). Next, k
eigenvectors e, €,,...,¢€, (A > -~ > A > -+~
> Ay) for the image set are calculated by the eigen-
value decomposition (Murase and Lindenbaum, 1995;
Oja, 1983):

Q= Qe;.

The k-dimensional subspace spanned by these eigen-
vectors is called the eigenspace. Fig. 2 shows a
pattern of eigenvectors. Generally, the first few
eigenvectors correspond to large changes in the pat-
tern (low-spatial frequency), and higher-order eigen-
vectors represent smaller changes (high-spatial fre-
quency).

4.2. Parametric eigenspace representation

An image can be mapped to a point in the
eigenspace, therefore a sequential movement can be
represented as a trajectory in the eigenspace. This is
called the parametric eigenspace representation. An
example of a gait pattern is show in Fig. 3. An only
3-dimensional eigenspace is shown here, whereas a

Fig. 3. Parametric eigenspace. An only 3-dimensional eigenspace
is shown here. The trajectory is parameterized by time, .

more than 10-dimensional eigenspace is used for
actual recognition. The trajectory is represented by a
vector function v;(1)=[e,, e,,..., €17y, (¢) pa-
rameterized by ¢ in a k-dimensional eigenspace.

Speed of the motion often changes and it is
sometimes not an essential factor. To solve this
problem, we compare image sequences with linear
time stretching. We prepare several reference pat-
terns of v;(at) in advance of the recognition stage
and keep a variety of reference patterns in a database.
The time stretching pattern v;(at) is generated by
resampling the original pattern. Here, we used linear
interpolation because the sampling rate of the refer-
ence pattern is changed by time stretching.

5. Individual recognition using spatio-temporal
correlation

We measure similarities between image sequences
by spatio-temporal correlation. Let an input image
sequence be x'(¢). This image sequence is obtained
using the same preprocessing method presented in
Section 2. First, the brightness of the image is nor-
malized by

x(t)=x(6)/ 12 ().
Then, this image vector is projected into the
eigenspace by

T
z(t) =[e,, €5,..., €] x(1).
The distance between an input vector sequence, z{t),
and reference vector sequence, v,(2), is

T
d}, = ril,igl t; I z(£) — v,;(at+b) 1>,
This similarity measurement is invariant to time
stretching and time shifting. It is known that this
distance value is a reversed order of the spatio-tem-
poral correlation, if the norms of the vectors z(¢) and
v;{at + b) are unity. This means that computing d;,
is equivalent to computing the maximum spatio-tem-
poral correlation:

T T
¢, = max z(t) v(at+b) dt.
g=max [~ 2(6) w(at +b)

Finally, the recognition result is selected as j which
minimizes the distance d7,.
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6. Experiment
6.1. Collecting data

We collected the gait patterns of seven people (10
each) wearing the same clothes. The sampling rate
was 30 frames/second, and the original image size
was 320 X 240. We extracted each person’s area and
normalized its size, position, and brightness as de-
scribed in Section 2, then put it in a 64 X 64 image
array. Five of them for each person are used for
learning, and the rest are for recognition test.

6.2. Result of recognition tests

Recognition accuracy was estimated with five test
data from each person. From Fig. 4 which shows the
recognition rate with increasing eigenspace dimen-
sion, it is clear that a 16-dimensional eigenspace
provides sufficient recognition accuracy.

We compare the computation time between our
method and exhaustive spatio-temporal correlation
(STC). We assume the following parameters, which
are taken from the actual numbers in our experi-
ments; image size: 64 X 64, the number of refer-
ences: 7, the number of reference frames: 40, the
number of input frames: 90, the number of time-
stretch steps: 30, the dimension of the eigenspace: k.
The number of pixel operations for our method and
the exhaustive STC method are

64 %64 x40* (90 — 40) *30%7 = 1720 M,

64 %64 % k *90 + k x40 (90 — 40) *30 7
=kx0.778 M,

respectively. The numbers of operations and recogni-

tion rates for each method are listed in Table 1. Our

method with 16 eigenspace dimensions reduces the

computation time at the rate of one 136th without

changing the recognition accuracy. We can reduce
the computation time more using less eigenspace

100 + -

90 4

80 1

Recognition rate (%)

70

60 T T T 1
0 10 20 30 40

Dimension of eigenspace

Fig. 4. The recognition rate with varying the dimension of the
eigenspace. A 16-dimensional eigenspace provides sufficient
recognition accuracy.

dimensions (i.e., 8); however, too much reduction
lowers the recognition accuracy.

We tested our method’s robustness to noise. A
binary random dot pattern (black /white) r was gen-
erated, whose black area is p% of the whole image
area. A test pattern was made by the Exclusive-OR
operation of the two patterns r and x(¢), and this
pattern was fed to our recognition system instead of

90 o

80

70

Recognition rate (%)

60

S50 Y T T T
0 10 20 30 40

Defective area (%)

Fig. 5. The recognition rate with varying the defective percentage
p, where a 16-dimensional eigenspace is used.

Table 1
Comparison between our method and spatio-temporal correlation
Our method Our method Exhaustive
(k=16) (k=28) STC method
No. of operations 126 M 6.3 M 1720 M
Recognition rate 100% (35 /35) 88% (31/35) 100% (35 /35)
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x(t). Here, p is a parameter that makes defects in
the original pattern. Fig. 5 shows the recognition rate
for increasing defective percentage p. This result
shows that the recognition association is still high,
even if 10% of the image area is defective due to
noise. This means we need not be too careful with
noise reduction in the preprocessing.

In this experiment, walkers wore the same shoes
and clothes. From the practical perspective of human

¢, c,
{c)
Fig. 6. (a) An extracted mouth area. {(b) A sequence of images

(saying ‘‘seven’’, sample rate: 7.5 frames/second). (c) The first
three cigenvectors for this area.

identification, we have to investigate the effect of
their shoes and clothes. These are part of future
research.

7. Application for lip reading

Spatio-temporal image correlation can be used in
many fields. This means our parametric eigenspace
method is also widely applicable to moving object
recognition. We conducted a simple experiment to
investigate its applicability to lip reading. Input data
was an image sequence of a mouth pronouncing the
number one through ten in English. In the experi-
ments, we took ten samples for each number, five for
learning and the other five for recognition. The
image sampling rate of inputs was 30 frames/sec-
ond. First, the face area was detected by the differ-
ence from the background, then the mouth area was
extracted using the positional relation in the face.
The size of this part was normalized to a 64 X 64
image. We used the grey-level image directly in this
case. Learning and recognition procedures were the
same as in the gait experiment. Fig. 6 shows an
extracted mouth area, an image sequence of a mouth
pronouncing ‘‘seven’’, and the eigenvectors for the
mouth area. The result of this experiment using 50
test samples tells us that a recognition rate of 76%
can be achieved with a 16-dimensional eigenspace,
whereas the same rate of 76% is obtained by spatio-
temporal correlation. The computation time with our
method, on the other hand, is 100 times faster than
the exhaustive spatio-temporal correlation method.

8. Conclusion

We have described a moving object recognition
method using spatio-temporal correlation and showed
that the computational cost can be reduced by intro-
ducing the parametric eigenspace representation
without losing recognition accuracy. The results of
human gait and lip reading experiments show this
method is robust to noise in an input image. We
conclude that the parametric eigenspace representa-
tion is widely applicable to moving object recogni-

i,
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