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SUMMARY

Technology of recognizing a 3-dimensional object
and finding its direction from a 2-dimensional image is
important in practical applications such as classification
of industrial products. A typical conventional method
for this purpose uses the 3-dimensionalstructure of the
object such as its edges and surface shapes. However,
extraction of a 3-dimensional structure with a high
accuracy, notably that of an arbitrary shaped object, is
difficult.

This paper proposes a method of recognizing a 3-
dimensional object by using a 2-dimensional collation.
A 2-dimensional collation which requires no 3-dimen-
. .onal feature has never seriously been examined, be-

cause it has been considered that the amounts of com-
putation and a memory for learning the 2-dimensional
image data (which are very complex due to the varia-
tions of viewing and lighting angles) are not acceptable.
The proposed method can learn a 3-dimensional object
as a set of 2-dimensional images by using a new para-
metric eigenspace approach with a small memory ca-
pacity. The proposed method can easily learn a 3-
dimensional object from its 2-dimensional image, and
can recognize the object and estimate its pose. This
paper includes experimental comparisons between the
proposed method and other 2-dimensional collation
methods.
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1. Introduction

There have been many studies on technology of
recognizing a 3-dimensional object from its 2-dimen-
sional image with estimation of its direction (pose) [1,
2], since this technology has many applications such as
classification of industrial products and monitoring of
objects in various environments. There have been two
basic methods of collation of a 3-dimensional object
and its model: a method using a 3-dimensional struc-
ture, and a method using a 2-dimensional structure.
Most conventional methods have been based on the
former, because it has been considered that the ap-
pearance of a 3-dimensional object varies widely de-
pending on the directions of illuminations and viewing
angles. A proposal of a framework for 3-dimensional
representations by Marr [3] has accelerated the trend
of the 3-dimensional approach. Most recent methods
use collation between an object and its memorized
model, after the 3-dimensional structure of the object
is reconstructed from its 2-dimensional image using
shades, edges and movements. There have been some
methods which use a 2-dimensional collation, e.g., a
method using the positions of refraction points and
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terminal points [S]. However, they use the collation
between feature points, and not 2-dimensional patterns.

This paper describes "a parametric eigenspace
method” which recognizes a 3-dimensional object by
using a 2-dimensional collation of image-signal levels.
This represents a 2-dimensional image, which changes
continuously due to the changes of direction and il-
lumination of a 3-dimensional object, by using a mani-
fold on a subspace (eigenspace) consisting of the eigen-
vector of the image. In the learning stage, the mani-
fold is constructed by calculating an eigenspace from
the set of images of the object. In the recognition
state, the category and pose of the object are estimated
by projecting the input image onto a point in the eigen-
space, and by detecting a position of the point which is
nearest to the point on the manifold. In this method,
an object can be learned automatically by feeding an
example of the object. In the recognition stage, it is
possible to carry out the recognition of a 3-dimensional
object in an input and the detection of the pose of the
object simultaneously.

The proposed method has a closed relationship
with the subspace method of pattern recognition [6,7].
Character recognition methods using subspace [8, 9},
and the face recognition method using an eigenface
[13, 14] are examples of applications of the eigenvector
of pixels. These examples are aimed mainly at classi-
fication of patterns, and not detection of parameters
such as the pose of an object or representation of a 3-
dimensional object.

The main part of the paper describes the 3-
dimensional collation, the 2-dimensional collation,
the parametric eigenspace method, and experimental
comparisons between the proposed method and other
method.

2. Three- and Two-Dimensional Collations
in Object Recognition

As already described, there have been two ap-
proaches in image recognition of a 3-dimensional ob-
ject: the 3-dimensional approach, and the 2-dimen-
sional approach. Let us compare their features.

The 3-dimensional collation method has a di-
mensional perfectness since it is basically 3-dimen-
sional. A model seen from any direction can be re-
presented by the same form in the 3-dimensional treat-
ment. The amount of 3-dimensional descriptions of a
model is less than that of a 2-dimensional description.

_At the stage of an object recognition in this approach,

the collation is carried out after the 3-dimensional
features have been reconstructed from its 2-dimen-
sional image. However, this reconstruction process has
never been perfect, and the reconstruction is not
stable. Similar problems occur when the model of an
input model is learned. Therefore, usually a model
(such as a manually prepared CAD model) is employed
for the recognition procedure.

The 2-dimensional collation method recognizes,
in principle a 3-dimensional object by using a 2-
dimensional comparison of the input image and a set
of 2-dimensional images stored. Therefore, extraction
of 3-dimensional features are not required. This meth-
od has never been tested, since the method appeared
to need a large amount of computation with a large
memory for leaning models which contain wide varia-
tions due to illuminations and viewing angles. If these
problems are solved, it would be possible to construct
a versatile recognition system which can apply even to
an arbitrary shaped 3-dimensional object.

The proposed method uses the 2-dimensional ap-
proach. A 3-dimensional object can be described as a
set of 2-dimensional images by employing a parametric
eigenspace method. Hence, the object can be learned
from the examples of 2-dimensional image so that a 3-
dimensional object can be recognized.

3. Learning Using Parametric Eigen-
space Method

An image representing the appearance of an
object varies widely depending on the position of its
illumination and viewing angle. Figure 1 shows an ex-
ample of a set of images of an object obtained by ro-
tating it. The method of memorizing these images is
the subject of the learning. An extraction of essential
information of an image from its large set of 2-dimen-
sional images is equivalent to a coding of the images.
This is the base of representation of images in this
approach, and this is called "parametric eigenspace
method."

In the learning stage, a parametric eigenspace is
constructed from a set of learning image samples. This
process consists of two stages. In the first stage, a
subspace (eigenspace) with eigenvector is constructed
from the learning image samples. In the second stage,
a series of learning images (Which vary continuously)
are projected on an eigenspace so that the series of the
original images is represented by constructing the
manifold. If there are more than two objects, the same
number of manifolds as the objects are constructed. In
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Fig. 1. An image set obtained by rotating an object.

the recognition process, the input image is projected on
yint on the eigenspace, then the recognition of the
object and the detection of its pose are carried out.

3.1. Normalization of images

First, the part of an object in an input is ex-
tracted.. The extraction in this experiment is carried
out by using a threshold or a difference in the image
from the background. Then, the value of zero is sub-
stituted in the part of the image other than the object.
The size of the object is normalized so that the object
contacts a square without changing the ratio of the
vertical to horizontal dimensions. By scanning this
square image, a series of pixels is obtained. Then the
original image is represented by a vector

F={2 Fo BT

_ixe [fl, )2‘2, - J?N] is the obtained series of pixels,
and N is the number of pixels.

To eliminate the influence of a variation of
sensor, sensitivity, the brightness is normalized. Let
the normalized image vector be x. The normalization
is achieved by

8)
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The appearance of an object varies depending on
its pose and illumination. Let us assume that an object
rotates around a vertical axis, and the object is illumi-
nated by a point light source which moves along a line
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Fig. 2. Setup used for automatic acquisition of object
image sets.

in addition to a general background light. This as-
sumption is acceptable for a natural indoor scene such
as the interior of a factory. To treat an object having
an arbitrary pose, the parameters can be increased.

Let us consider a case where P kinds of objects
are learned. Let a set of images of an object, which
rotates in 360° under an illumination with varying
direction, be

{xi®, - il 2l -, il

where R is the number of the increment in the rotation
of the object, and L is the number of directions of the
light source. Let us call this "image set of pth object.”
The image sets all of the objects are represented by
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Let us call each image vector in this set "learning
sample." These samples were obtained in this experi-
ment by using a computer-controlled turntable and a
direction-adjustable robot arm for the light source as
shown in Fig. 2. By using this apparatus, the learning
samples are obtained automatically.

3.2. Calculation of eigenvectors

As shown by the example of image series in Fig.
1, two adjacent images have a very high correlation
between each other. The image is compressed by using
this correlation. In this experiment, a Karhunen-Loéve
expansion, which can compress an image most effi-
ciently from the point of view of a mean square error,
is employed to compress the image set. This method



Fig. 3. Eigenvectors for the object shown in Fig. 1.

approximates the original image by using a subspace
(eigenspace) spanned by the eigenvectors of the con-
variance matrix of the image set. Let us calculate the
universal eigenspace (which is the eigenspace of all
objects) and the eigenspace of object p.

An image representing all the learning images
(the mean image) is given by

M=

Dx

=1

__ 1 2z
C=RLP 27

N

By subtracting the mean image from each image, a
matrix

X=[xl—c,. 2—c, - 2l —c]

is made. The convariance matrix of the image set is
given by

Q=XxX"
The eigenspace (e.g., k-dimensional) is given by solving
Ae:= Qe;

and by taking the eigenvectors (e, ... e,) which cor-

respond to k the largest eigenvalues (1; = - = 1,
2 Ay) as the base vector. Generally, it is difficult to
calculate eigenvectors having a large dimension such as
the convariance of an image. Note that this experi-
ment treats 16,384 dimensions. If the number of pixels
is small, it is possible to calculate the eigenvector by
using, for example, the singular-value decomposition or
the STA method [10]. The universal eigenspace is a
space suitable of representing the set of all the objects,
& is useful for identifying objects.
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Fig. 4. Parametric eigenspace representation of the ob-
ject shown in Fig. 1.

The eigenspace of object p is a space which is
calculated using the image set of object p alone. Let-
ting the convariance matrix be @ ?), the eigenspace of
the pth object is given by solving

A('.P)e(fp)= Q(I’)e(ff’)

and by taking the eigenvector as the base. Since the
eigenspace of object p is a space suitable for repre-
senting the object, the eigenspace used for estimating
the pose of the object after its name, is identified.
Figure 3 shows examples of the eigenvector processed
from the images shown in Fig. 1.

3.3. Parametric eigenspace representation of
external aspect of objects

Let us represent a 3-dimensional object, which
varies continuously due to its pose and/or the position
of a light source, on a manifold in a eigenspace. When
a vector representing the remainder of a learning sam-
ple minus the mean image is projected onto an eigen-
space, by using

g‘,?}::[c, L@, e;.]’(l"r'.’) ~c)

a single image corresponds to a single point. There-
fore, the projection of learning samples corresponding
to a one turn (360°) form a series of 2-dimensional
points. Because, when the pose of an object varies
little, its images also change little, the correlation
between each image is high, and image having a high
correlation are projected closely on an eigenspace.



Figure 4 shows an example of a parametricrepre-
sentation of an object (shown in Fig. 1). This series of
points is illustrated in a 3-dimensional space, although
they are in fact a series of points in a multiple-dimen-
sional space. This series of points is represented as a
continuous line by interpolating between the points. A
cubic spline [17] was used for interpolation in this ex-
periment. Images of an object under a varying position
of a light source can be treated in a similar way, i.e.,a
2-dimensional manifold represented by the pose of an
object and the position of a light source is constructed
on an eigenspace. Let this manifold be g ®) 8y, 8,),
where 8, and 8, correspond to the parameters of the
rotation and the position of the light source, respec-
tively. This manifold contains the pose of the object
and the position of the light source which exist in the
learning sample, because these are interpolated. The
same number of manifolds as the number categories of
objects are constructed in the universal eigenspace.

The manifold of object p also is constructed in
*  eigenspace of object p. The learning samples of
Ovject are projected on the eigenspace of object p by
using

Fi=[e?”, e - 2] (x)— ')

so that manifolds are constructed with interpolation,
where ¢ ?) is the mean of learning sample of object p.

The interpolation is represented by f (P)(Ol, 6,).

4. Recognition

First, the same process as in the learning stage is
applied to the recognition process, i.e., the region of an
object is extracted from the original image using sub-
traction. The size and brightness of the extracted
region are normalized. Let the vector of the normal-
ized image be y. This vector is projected to a point z

\ universal eigenspace by using

-

z=[e, e, e] (y—c)

where ¢ is the aforementioned mean image. The re-
cognition of an object is carried out by investigatingthe
position of the projected point z on the manifolds (P
categories). The distance between point z and the
manifold g @) (8,, 8,) is given by

"' =min | z—g'"(6:, 6:) I

The recognition of the object is achieved by finding p
which minimizes this distance. In this experiment, p is
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Fig. 5. (a) An input image; (b) the input image is

mapped to a point in the eigenspace. The location of

the object point on the curve determines the pose of
the object.

obtained by searching a table which contains all the re-
presentative points on the manifold, since this process
increases the processing speed.

After the name of object p is recognized, its pose
is estimated by using the following procedure: the input
imagey is projected on the eigenspace of the object by
using

Z(P) z[eiP) , eéP) Ve e(kP)]T(y_ C(P))
The detection of the pose of an object is equivalent to

the detection of position of point z ?) on the manifold.
For this purpose, 6; which minimizes

(/Zm):’;ni,,n | 27— 200, 0) |

is found. Figure 5 shows the relationship between the
original image, a point in the eigenspace to which the
point is projected, and 6 which has the minimum
distance. This example used a 1-dimensional manifold
(a curved line), al-though an actual search is carried
out in a 2-dimen-sional manifold (a curved surface).

5. Recognition Experiments

Four objects as shown in Fig. 6(a) were used for
the experiments. A set of learning samples of each of
the objects was made by using a computer-controlled
turntable (Fig. 1). Each set has 90 poses taken at 4°
intervals (360° in all). The light source is changed at
5 positions with intervals of 30° around the turntable.
Therefore 4 X 90 x § - 1800 learning samples were
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Fig. 6. (a) The objects in the experiments; (b) the
parametric eigenspace for the objects in (a).

made for each set. Each image is normalized in 128 X
128 pixels, and stored in a real number of 4 bytes (118
Mbytes in all). Data for the recognition experiments
were made by sampling 90 poses (at positions with a
phase difference of 2° referring to the learning sam-
ples) and three positions of the light source (1800 im-
ages in all). In the learning stage, the process de-
scribed in section 3 was applied, and the parametric
eigenspace is calculated for each object. Figure 6(b)
shows examples. If a single manifold is in an 8-dimen-
sional eigenspace, the amount of the data is about 640
Kbytes for storing the eigenvectors,and 115 Kbytes for
a table for the manifold.

The recognition experiments were carried out by
applying the process described in section 4. Figure
7(a) shows the relationship between the recognition
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Fig. 7. (a) Recognition rate plotted as a function of

the number of eigenspace dimensions; (b) recognition

rate plotted as a function of the number of poses of

each learning object; (c) histogram of the errors in the
pose estimation

rate and the dimension of the parametric eigenspace.
This shows that the recognition rate saturates after 8
dimensions. It is possible in some cases to recognize
an object which does not exist in the learning sample
by using this method. Therefore, it is worth investigat-
ing the number of poses which is sufficient for the re-
cognition. Figure 7(b) shows the recognition rate with
a reduced number of poses. This shows that about 15
poses are sufficient to recognize an object as complex
as these examples. Figure 7(c) shows the mean value.
Another experiment has been carried out to find the
effect of the error on the recognition accuracy when an
object is extracted incorrectly from its background.
The results show that this kind of small extraction
error (less than 3 percent of the size of an object) has
no significant effect on the recognition accuracy (see

[18]).



6. Discussions
6.1. Comparison with other methods

Let us compare the proposed method, which is
basically a 2-dimensional collation of a 3-dimensional
object, with other similar methods. It is interesting to
determine the effectiveness of conventional 2-dimen-
sional image recognition methods when they are used
for recognizing 3-dimensional objects. Three typical
methods are selected for the comparison: (1) simple
correlation method [14]; (2) the eigenface method used
by Turk et al. [14]; and (3) the projection method for
letter recognition used by Murase et al. [9]. The out-
line of each method is as follows.

(1) Simple correlation method

In the learning stage, the set of mean image vec-
tors, ¢ Y’) for the learning is calculated for each object

In the recognition stage, the correlation function
‘a;P) =yl (11’) between the input image y and the

image vector is calculated, and a p which makes the
maximum correlation is regarded as the final result.

(2) Eigenface method

In the learning stage, an eigenspace is made by
calculating the eigenvector of the convariance of a set
of images, assuming an 8-dimensional space. The

mean value ¢ g") is calculated for each object p by pro-
jecting the learning sample onto the space. In the re-
cognition stage, the input image is projected onto the
eigenspace, and the distance d 4(“" ) = k - ¢ SP )I
between the point and the mean value also is cal-

culated. An object p which minimizes the distance is
regarded as the final result.

(3) Subspace method

In the learning stage, the eigenvector [e gp ), e gp ),
e IEP)] of the auto-correlation matrix of the set of
images is calculated for each object p, and the eigen-
space of each object p is made. In the recognition
stage, the input image y is projected onto the ejgen-
space (assuming 8-dimensional) of each object. An ob-
ject p which makes the projection energy

AP =3 (4 e
h=1

maximum is regarded as the final result.
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Table 1. Experimental comparison of methods

Method 1 2 3 Proposed
Recogni-

tion rate 68.6% 66.8 98.7 99.8
Detection Not Not Not Possi-
of pose possible possible possible ble

Eight objects, including 4 objects shown in Fig. 1,
were used in the comparison experiments; 144 images
containing 18 poses were used for the learning, and 720
images containing 90 poses were used for the recogni-
tion. The position of the light source is fixed through-
out all the cases. Table 1 shows the recognition rate
for each method. The table shows that methods (1)
and (2) are effective for relatively simple 2-dimen-
sional patterns, but they are less accurate for a
complex object such as those shown in Figs. 1 and 6(a).
Method (3) can recognize a 3-dimensional object with
a reasonable accuracy, but cannot detect its pose. The
proposed method recognizes any object with a higher
accuracy than the other three methods, and can detect
the pose of an object.

6.2. Application to motion images

Figure 8 shows an example of application of the
proposed method to a motion image. Figure 8(a)
shows the sequence of the original input images con-
taining an object. Figure 8(b) shows the object ex-
tracted from each of the input images by using the dif-
ference from its background. Figure 8(c) shows the
learning samples in the closest pose. Figure 8(d)
shows the pose the object computed.

6.3. Application to face images

Figure 9 shows an application of the proposed
method to face images. This experiment uses a set of
learning samples with 18 directions. The method can
recognize a face in an arbitrary direction, and can
automatically detect its direction (pose).

6.4. Comparison of the proposed method with
human 3-D object recognition

In psychology, whether the human uses a 2- or 3-
dimensional collation in recognition of a 3-dimensional



(a) Image sequence of a moving object.

(b) Segmentation of the moving object.

(c) Learning sample with closest pose.

2)

(4) %)

100
3 |
g,, . ()
=
%
2 04
-
2
=
£ -sof
b4
e
-100 T
5 10

T
15

y J

T
20 25 30

Frame number

(d) Computed pose of the moving objetct.

Fig. 8. Parametric eigenspace method applied to the image sequence of a moving car.
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Fig. 9. Pose estimation for the faces.

object is an interesting problem. Edelman et al. have
found in their psychological experiment on mental ro-
tation [16], the following facts {17]: the human recog-
nizes an object which is familiar to him/her in a 2-di-
mensional collation, although he/she recognizes an ob-
ject which is not familiar to him/her in a 3-dimensional
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collation. This shows that the human recognizes an
object which can be seen frequently in everyday life by
using a simple 2-dimensional collation.

7. Conclusions

This paper describes a method which recognizes
a 3-dimensional object in an arbitrary direction and
detects its pose by using a 2-dimensional collation.

This paper also describes the parametric eigenspace
method which represents a continuously varying series
of image by using a manifold in an eigenvector space.
The proposed method can memorize a 3-dimensional
object as a set of 2-dimensional images with a small
capacity of memory. As a result, it has become pos-
sible to learn a 3-dimensional object from its 2-di-



mensional image samples, to recognize the object by
using a 2-dimensional collation, and to detect its pose,
without extracting 3-dimensional structures such as
edges or shapes which are difficult in conventional
methods.

In this paper, only two parameters (a single ro-
tation of an object and the positions of a light source)
are considered. We are planning to expand our meth-
od in the future to cases where more parameters are
involved.

Acknowledgment. The authors wish to express
their thanks to Prof. T. Poggio (MIT) and Dr. D.
Weinshall (IBM Washington Laboratory) for their
important advice, to Dr. Tatsuya Kimura (Director,
NTT Basic Research Laboratories), Dr. Ryokei
Nakatsu (Head of Science Department, NTT BRL),
and Dr. Seichiro Naito (Leader, NTT BRL) for their
encouragement.

REFERENCES

1. R. T. Chin and C. R. Dyer. Model-based re-
cognition in robot vision. ACM Computing
Surveys, 18, 1, pp. 67-108 (March 1986).

2. P.J. Besl and R. C. Jain. Three-dimensional
object recognition. ACM Computing Surveys,
17, 1, pp. 75-145 (1985).

3. D. Marr. Vision. W. H. Freeman, New York
(1982).

4. S. Ullman and R. Basri. Recognition by linear
combination of models. IEEE Trans. on Pat-
tern Analysis and Machine Intelligence, 13, 10,
pp. 992-1006 (Oct. 1991).

5. T. Poggio and S. Edelman. A network that
learns to recognize three-dimensional objects.
Nature, 343, pp. 263-266 (1990).

6. K. Fukunaga. Introduction to Statistical Pat-
tern Recognition. Academic Press, London
(1990).

7. E.Oja. Subspace Methods of Pattern Recogni-

53

10.

11.

12.

13.

14.

15.

16.

17.

18.

tion.
(1983).
T. Iijima. Letter recognition system. ASPET/
71. Journal of Institute of TV, Japan, 27, 3, pp.
157-164 (1973).

H. Murase, F. Kimura, M. Yoshimura and Y.
Miyake. An improvement of the auto-correla-
tion hand-printed matrix Hiragana. Trans.
LE.I.C.E., Japan, J64-D, 3, pp. 276-283 (1981).
H. Murase and M. Lindenbaum. Spatial tem-
poral adaptive method for partial eigenstruc-
ture decomposition of large images. NTT
Technical Report No. 6527 (March 1992)
(IEEE Trans. on Image Processing, to appear).
H. Murase and S. K. Nayar. Learning object
models from appearance. AAAT-93, American
Association for Artificial Intelligence, pp. 836-
843 (July 1993).

H. Murase and S. K. Nayar. Learning and re-
cognition of 3D objects from appearance.
IEEE Qualitative Vision Workshop, pp. 39-50,
New York (June 1993).

L. Sirovich and M. Kirby. Low dimensional
procedure for the characterization of human
faces. Journal of Optical Society of America,
4,3, pp. 519-524 (1987).

M. A. Turk and A. P. Pentland. Face Recog-
nition Using Eigenfaces. Proc. of IEEE Con-
ference on Computer Vision and Pattern Re-
cognition, pp. 586-591 (June 1991).

W. Press, B. P. Flannery, S. A. Teukolsky and
W. T. Vetterling. Numerical Recipes in C.
Cambridge University Press, Cambridge (1988).
M. Tarr and S. Pinker. Mental rotation and
orientation-dependence in shape recognition.
Cognitive Psychology, 21, pp. 233-282 (1989).
S. Edelman and D. Weinshall. A self-organiz-
ing multiple-view representation of 3D objects.
Biological Cybernetics, 64, pp. 209-219 (1991).
H. Murase and S. K. Nayar. Illumination plan-
ning for object recognition in structured en-
vironments. Proc. of IEEE Conference on
Computer Vision and Pattern Recognition
(June 1994).

Research Studies Press, Hertfordshire



AUTHORS (from left to right)

dkf B LM

Hiroshi Kimura received his B.E. and M.S. degrees in 1978 and 1980, respectively, from Electronics Department,
Nagoya University, and his Dr. of Eng. degree from there in 1987. He joined NTT in 1980. He has engaged in
research on character and figure recognitions, and computer vision. He has been a guest researcher at Computer
Department of Columbia University (USA) for one year in 1992. Presently, he is a Distinguished Research Scientist
at NTT Basic Research Laboratories. He was awarded a Young Engineer Award by IECE Japan in 1985; and the Best
Paper Award of CVPR (IEEE) in 1994. He is a member of IEEE; Institute of Information Processing, Japan; and
AVIRG.

Shree K. Nayar received his Ph.D. from Carnegie-MellonUniversity in 1990. He has been an Associate Professor
at Columbia University since 1991. He was awarded the Marr Prize from ICCV Conference in 1990. He has engaged
in research on computer vision, notably physics-based vision, and robot vision.



