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IMumination Planning for Object Recognition
Using Parametric Eigenspaces

Hiroshi Murase and Shree K. Nayar

Abstract—This correspondence presents a novel approach to the prob-
lem of illumination planning for robust object recognition in structured
environments. Given a set of objects, the goal is to determine the
illumination for which the objects are most distinguishable in appearance
from each other. Correlation is used as a measure of similarity between
objects. For each object, a large number of images is automatically
obtained by varying pose and illumination direction. Images of all objects,
together, constitute the planning image set. The planning set is com-
pressed using the Karhunen-Loeve transform to obtain a low-dimensional
subspace, called the eigenspace. For each illumination direction, objects
are represented as parametrized manifolds in eigenspace. The minimum
distance between the manifolds of two objects represents similarity
between the objects in the correlation sense. The optimal source direction
is therefore one that maximizes the shortest distance between object
manifolds. Several experiments have been conducted using real objects.
Results produced by the illumination planner have been used to enhance
the performance of an object recognition system.

Index Terms— Illumination planning, object recognition, correlation,
image compression, principal component analysis, appearance matching,
parametric appearance representation, pose invariance

1. INTRODUCTION

In structured environments, vision systems are used to perform a
variety of tasks, such as inspecting manufactured parts, recognizing
objects and sorting them, or aiding a robot in assembly operations.
In each of these cases, the illumination of the environment can be
selected to enhance the reliability and accuracy of the vision system.
Currently, illumination parameters are selected by human operators
using the trial and error approach. The resulting illumination is
seldom one that maximizes the performance of the vision system.

Lately, automatic illumination planning has emerged as a topic
of research interest. Most of this work focuses on determining light
source positions that maximize the detectability of image features
such as edges. Cowan and Bergman [2] used CAD (geometric)
models of objects to compute source positions for which all brightness
values in the image lie within the sensor’s dynamic range. The
positions, orientations, and reflectance parameters of the objects
are assumed to be known. Using the same assijmptions, Cowan
and Nitzan [3] computed source positions that ensure that the
brightness contrast at selected edges of objects exceeds a threshold
value. Recently, Yi et al. [12], [13] used the Torrance and Sparrow
reflectance model to obtain accurate predictions of the brightness of
object points. Yi propagates errors due to noise in image brightness
to obtain errors in the positions of line segments in the image.
The planning problem is then to determine the source direction that
maximizes the accuracy of edge positions.

Addressing a different problem, Sakane et al. [10] determine
optimal source directions for a photometric stereo system. They
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use the accuracy of computed surface normals and the range of
computable normals as criteria for selecting optimal source directions.
Recently, Batchelor [1] proposed an expert system that uses the
knowledge of illumination experts to suggest the best illumination
for a given vision application. The illumination plan proposed by
an expert is based on his or her experience and not on a careful
theoretical analysis of the problem. Hence the suggested illumination
is not guaranteed to be optimal.

Here, we present a new approach to illumination planning for
object recognition in structured environments. Object appearance is
used as the criterion for finding optimal illumination. Given a set
of objects, the goal is to determine the source direction that makes
the objects maximally different from each other in the correlation
sense. The resulting source direction can then be used to optimize the
performance of a correlation-based' recognition system. In contrast
to previous work on illumination planning, we assume that the
pose of each object is unknown. Our objective is to find a source
direction that is optimal over all poses of the objects. Unlike previous
approaches, the method does not rely on the availability of CAD
models. No assumptions are made with respect to geometric or
reflectance properties of the objects. Instead, a sample of each object
is used during the planning stage.

For each object, a large set of brightness images is automatically
obtained by varying its pose and the illumination direction. One way
to accomplish image-based illumination planning is to compare all
images (corresponding to different poses and illumination directions)
of each object with images of other objects. Images can be compared
by computing their correlation. The optimal illumination direction
is one for which images of each object are minimally correlated
with those of other objects. Given the large number of images
we are dealing with, this approach is clearly impractical from a
computational perspective. However, we accomplish essentially the
same task but in a very efficient manner. Images in the planning
set are correlated to a large degree since variations in object pose
and illumination between consecutive images are small. We take
advantage of this strong correlation and compress the planning image
set using the Karhunen-Loeve transform [8], a technique widely
used for image compression and pattern recognition. The result is
a low-dimensional subspace, cailed the eigenspace.”

For each source direction, images (for different poses) of each
object are mapped to the eigenspace to obtain a manifold. This
manifold is parametrized by object pose. The shortest distance
between the manifolds of two objects represents poses of the objects
for which their appearances are most similar, i.e., correlation is
maximum. Our goal therefore is to find the source direction for
which the manifolds of all objects are most distant from each other.
This is the optimal source direction for the entire set of objects;
it represents the illumination that makes the objects appear most
different from each other, irrespective of their poses. Though we
formulate the planning problem as one of finding the optimal source
direction, several other source characteristics—such as size, distance,
and spectral distribution—can be incorporated into the planning
process.

Once the optimal illumination has been planned, its validity must
be verified. For this, we have used an object recognition system that

1 Correlation, or template matching, remains one of the most widely used
recognition strategies in the industrial arena. Finding optimal illumination for
this task is therefore a problem of significant practical relevance.

2This subspace has previously been used in vision to classify handwriting
[4] and human faces [11], as well as for recognition and pose estimation of
3D objects [6].
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Fig. 1. The effect of illumination direction on object appearance.

identifies 3D objects and computes their poses from brightness images
[6]. Experiments using this system show that the planned illumination
direction produces the highest recognition rate compared to any other
source direction. We conclude with a discussion on the merits and
limitations of the method.

H. ILLUMINATION PLANNING

The appearance of an object depends on its shape, its reflectance
properties, its pose, and the illumination conditions. The first two
factors are intrinsic properties of the object that do not vary. On the
other hand, object pose and illumination can vary substantially from
one scene to the next. In most machine vision applications, the pose of
an object is not within the control of the vision system; objects show
up in the scene with arbitrary poses. That leaves us with illumination.
In structured environments, such as industrial assembly lines, illumi-
nation of the scene can be controlled to provide the ‘‘best’’ images
of the objects of interest. Fig. 1 shows images of a manufactured
part obtained using different illumination directions. These images
illustrate that object appearance is very sensitive to the direction of
illumination. Our objective is to determine the illumination direction
that makes a set of such objects most distinguishable from each other,
irrespective of their poses.

The objects need not be illuminated only by the source whose
optimal direction we wish to determine. They may be illuminated,
in addition, by other sources with unknown but constant intensities
and directions. The planning system is unaffected by the existence of
such ambient lighting. Although we have posed the planning problem
as one of finding the optimal source direction, the approach can
also be used to determine optimal source position. In fact, since the
planning method uses 2D images and not 3D object models, other
source characteristics (such as source size and color) as well as sensor
characteristics (such as spectral response and optical settings) can be
incorporated into the planning process. The only requirement is that
these source and sensor characteristics be varied during the image
acquisition stage of planning. The planning system described below
is fully automated.

A. Planning Image Set

While constructing the planning image set we need to ensure
that all object images are of the same size. Each digitized image
is segmented into an object region and a background region. The
background is assigned zero brightness value, and the object region
is resampled such that the larger of its two dimensions fits the size
we have selected for image representation. The result is an image
that is normalized with respect to scale and thus invariant to the
magnification of the imaging system. This image is written as a vector
% by reading pixel values by raster scan:

X = [#1, &2, 0n] " )

The above vector represents an unprocessed brightness image. Alter-
natively, processed images such as smoothed images, first derivatives,
second derivatives, Laplacian, or the power spectrum of the image

Fig. 2. Image set for the object shown in Fig. 1 obtained by varying pose, for
a given illumination direction. Only 15 of the 45 images in the set are shown.

may be used in place of the above brightness image. The image
type is selected based on its ability to capture distinct appearance
characteristics of the objects of interest. Here, for the purpose of
developing the illumination planning method we use raw brightness
images, bearing in mind that the planning methodology, as well as the
recognition technique described in Section III, are directly applicable
to any other image type.

It is desirable that the illumination planning system be unaffected
by variations in the intensity of illumination or the aperture of the
imaging system. This can be achieved by normalizing each image
such that the total energy contained in the image is unity. This
brightness normalization transforms each measured image X to a
normalized image:

X = [.r1,1f2,~~-..rA\-]T 2)

where x = %/ || % ||

We denote each normalized image as x,.;'?’, where r is the rotation
or pose parameter, ! represents the illumination direction, and p is
the object number. The image set obtained by varying the pose of an
object for a given illumination direction [ can be written as

X, A {xl.z(”),xz_z(”) e xp® } 3)

where R is the total number of discrete poses used for each object.
Let P be the total number of objects and L be the total number of
illumination directions. Then, the planning image set for the entire
set of objects is

{‘ :)(1(1)q _— XL(I), X1(2)’ — XL(Q)q xl(P). e, XL(P) }
(C))
In our experiments, we have used a motorized turntable to vary
object pose. This gives us pose variations about a single axis. We have
used several light sources positioned in a plane around the turntable.
For each object illumination direction is automatically varied, and for
each illumination direction a set of images is obtained by rotating the
object. This setup was used to demonstrate the proposed planning
method. However, the method itself is extensible to arbitrary object
rotations and light source directions in three dimensions. Fig. 2 shows
some of the images in the set obtained by varying the pose of the
part shown in Fig. 1 for a given illumination direction.

B. Universal Eigenspace

Consecutive images in the planning image set are correlated to a
degree since pose and illumination variations between these images
are not large. Our objective is to take advantage of this correlation and
compress the large planning set into low-dimensional representations
of each object’s appearance. A suitable compression technique is the
Karhunen-Loeve method [8], where the eigenvectors of an image set
are computed and used as orthogonal basis functions for representing
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e, (4, =40) e, (4, = 35) e, (4, =18)
Fig. 3. Eigenvectors 'con'esponding to the three largest eigenvalues, com-
puted for the image set shown in Fig. 2.

individual images. Although, in general, all eigenvectors of an image
set are required for perfect reconstruction of any particular image,
only a few are sufficient for illumination planning. These eigenvectors
constitute what we refer to as the universal eigenspace.

To compute the universal eigenspace, we first subtract the average
c of all images in the planning set from each image in the set. This
ensures that the eigenvector with the largest eigenvalue represents
the dimension in eigenspace in which the variance of images is
maximum in the correlation sense. In other words, it is the most
important dimension of the eigenspace. A new image set is obtained
by subtracting the average c¢ from each image in the planning set:

xriF —¢ } )

The image matrix Y is N xM, where M = RLP is the total
number of images in the planning set and IV is the number of pixels
in each image. To compute eigenvectors of the image set, we define
the covariance matrix:

A
Y = {xl,l(l) - c, xz,l(l) —-C, *r,

Q 2 vyl (6)

Q is N x N, clearly a very large matrix since a large number of
pixels constitute an image. The eigenvectors e; and the corresponding
eigenvalues A, of Q are to be computed by solving the following
well-known eigenvector decomposition problem:

Xie; = Qe;. @)

All N eigenvectors of Q constitute a complete eigenspace. Any two
images from the planning image set, when projected to this space,
give two discrete points. We will show later that the distance between
these points is a measure of correlation between the two images.
Although all N eigenvectors of the planning image set are needed to
represent images exactly, only a small number (¢ < N) of eigen-
vectors are generally sufficient for capturing the primary appearance
characteristics of objects. These k eigenvectors correspond to the
largest I eigenvalues of Q and constitute the universal eigenspace.

Efficient algorithms for computing eigenvectors of very large
matrices (such as Q) are described in [8] and summarized in
[6]. In our experiments, we have used the algorithm presented in
[5]. The number k of eigenvectors to be computed is selected
empirically based on our experimental results on planning as well
as recognition. For the objects we have used in our experiments,
universal eigenspaces with less than 10 dimensions (k¢ < 10) are
found to be adequate. As an example, Fig. 3 shows three eigenvectors
(shown as images) computed for the image set shown in Fig. 2. They
are shown in descending order of their eigenvalue magnitudes.

C. Parametric Eigenspace Representation

Our objective is to get a measure of how well the set of objects
can be discriminated under illumination from each of the source
directions. The image set X includes images of the object p,
obtained for different poses r, while it is illuminated by the source .
Each image %, in X;*® is projected to the universal eigenspace.
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Fig. 4. Curve in universal eigenspace obtained by projecting the object
image set shown in Fig. 2.

This is done by subtracting the average image ¢ from %47, then
finding the dot product of the result with each of the k eigenvectors,
or dimensions, of the universal eigenspace. The result is a single
point in eigenspace:

» (»)

g = —-c). ()

[e1, €2, v ex ] (X

By projecting all the planning samples in X,P) we get a set of
discrete points in universal eigenspace. Pose variation between any
two consecutive images in X, is small. As a result, consecutive
images are strongly correlated and their projections in eigenspace
are close to one another.> The reasons for this are given in the next
section. The discrete points obtained by projecting all samples in
X, can be assumed to lie on a manifold that represents all possible
poses of the object for the illumination direction I. The discrete
points are interpolated to obtain the manifold P (81, 62, 83),
where 6,, 62, and 3 are the three continuous rotation parameters
needed to describe pose in three-dimensional space. The above
manifold is referred to as the parametric eigenspace representation,
it is a compact representation of the appearance of object p when
illuminated by source . In our experiments, we rotate the object
about a single axis. This variation in pose is sufficient for objects
that have a finite number of stable configurations when placed on a
planar surface. Thus, the manifold is reduced to a curve with a single
parameter, ¢;:

g™ (6,). 9)

Fig. 4 shows the parametrized eigenspace representation of the object
shown in Fig. 1. The eigenvectors (dimensions) of this eigenspace
were computed using a planning set that includes two object image
sets. The figure shows only three of the most significant dimensions
of the eigenspace since it is difficult to display and visualize higher
dimensional spaces. The points shown on the curve correspond to
projections of the images shown in Fig. 2. The continuous curve
passing through the discrete points is parametrized by rotation 6;
and is obtained by cubic spline interpolation [9].

3 This assumption holds well except when the object is either highly specular
or has high-frequency texture. In such cases, an incremental pose variation
can cause dramatic changes in image brightness.
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D. Distance in Eigenspace and Template Matching

Before proceeding to determine the optimal source direction,
it is worth describing some relevant properties of the eigenspace
representation. Consider two images X,, and X, that belong to the
image set used to compute an eigenspace. Let the points g, and g
be the projections of the two images in the eigenspace. It is well
known in pattern recognition theory [8] that each of the images can
be expressed in terms of its projection as

N
Xm = ng,‘ei + c (10)

=1

where ¢ is once again the average of the entire image set. The
above expression states that the image X, can be exactly represented
as a weighted sum of all N eigenvectors of the image set. The
individual weights g..,; are the coordinates of the projection of the
image in eigenspace. Note that our eigenspace is composed of only
k eigenvectors. Since these eigenvectors correspond to the largest
eigenvalues, they represent the most prominent principal components
of the image set. Hence, X, can be approximated by the first &
terms in the above summation:

k
Xm R Y Gmi€i + €. (11)

=1

As a result of the brightness normalization described in Section
II-A, X, and X, are unit vectors. The similarity between the two
images can be determined by finding the sum of squared difference
(SSD) between brightness values in the images. This measure is
extensively used for template matching in a variety of industrial
applications. We known that the SSD measure can be related to
correlation as

|| Xm — Xn ||2 = (xm — Xn )T (xnl — Xn ) (12)

T
=2 — 2X;,m Xgp

where, X, | X» is the correlation between the images. Maximizing
correlation, therefore, corresponds to minimizing the SSD and thus
maximizing similarity between the images. Alternatively, the SSD can
be expressed in terms of the coordinates g, and g, in eigenspace
using (11):

k k
% = % PRl Y gmier = D gmees P2 (13)
=1

=1

Note that the eigenvectors are orthogonal; ele ; = 1 wheni =
j, and O otherwise. Using this, the right-hand side of the above
expression can be simplified to get

H Xm — Xan ||2 ~ ” gm — 8n l|2 . (14)

The above relation implies that the square of the Euclidean distance
between the points g,, and g, is an approximation of the SSD
between the images X., and x,. In other words, the closer the
projections are in eigenspace, the more highly correlated are the
images. We use this property of the eigenspace to determine optimal
illumination in the next section.

E. Optimal Hlumination Direction

Consider two objects, say p and ¢, from the set used to compute the
universal eigenspace. For each light source direction /, we compute
parametric curves for the two objects:

gI(P) (91(1’) ) and gl(Q) (01(4) ) (15)

ez

Fig. 5. Parametric eigenspace curves of two different objects obtained for
a given illumination direction. The shortest distance (line segment) between
the two curves represents the worst-case poses for which the objects appear
most similar in the correlation sense.

Here, the parameters #;*) and 8,(%) represent rotations of p and ¢,
respectively. The shortest Euclidean distance between the two curves
is computed as

dI(P-fI) — 61(7’).91(‘1)” gl(P) (01(1-')) _ gl(‘{) (01(4)) ” . (16)

The 6, and 6,9 values that produce the minimum distance
49 correspond to poses of the two objects for which the objects
appear most similar (in correlation) when illuminated by source /.
The illumination planning problem is formulated as follows: Find
the source direction I that maximizes the minimum distance d;®*¥)
between the object curves. This max-min strategy yields the safest
illumination direction for the worst-case poses that make the two
objects appear most similar.

The above example includes only two objects. The max-min
strategy is easily extended to a set of P objects. For a given illu-
mination direction [, we now have P curves in universal eigenspace.
The minimum distance d;*?) is computed for all pairs of objects,
resulting in P? minimum distances. The minimum of all these
distances, say di, represents the worst case for the entire object set.
The source direction [ that maximizes d; is then the optimal source
direction for the object set. Fig. 5 shows eigenspace curves of two
objects used in the experiments, for a particular illumination direction.
The solid-line segment illustrates the shortest distance between the
two curves. If in a particular application the poses of the objects
are fixed, the eigenspace representation of each object, for a given
illumination, is reduced from a curve to a point. In that case, the
optimal source direction maximizes the minimum distance between
points in eigenspace that represent different objects.

III. CORRELATION-BASED OBJECT RECOGNITION

In this section we describe an object recognition system that is
based on the parametric eigenspace representation. We first presented
this system in [6], where it was demonstrated as an effective approach
for recognizing a variety of complex 3D objects. In the experimental
section, it is used to evaluate the performance of the illumination
planning method described above.
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(@)

its pose in the scene.

Fig. 7. Device used to obtain planning image sets. Each object is placed on
the motorized turntable and illuminated from different directions.

Consider an image of a scene that includes one or more of the
objects we have used to compute the universal eigenspace. We
assume that the objects are not occluded by other objects in the
scene when viewed from the sensor direction, and that image regions
corresponding to objects have been segmented away from the scene
image. In a variety of industrial applications, objects appear in
the field on the vision system without occluding each other. For
segmentation, one of several existing algorithms may be applied. In
some applications a constant brightness background can be used, in
which case a simple thresholding operation yields object regions. If
the objects are in motion, spatio-temporal image filters (see [6] for
examples) may be applied to recover the moving (object) regions.

The first step is to normalize the segmented image regions with
respect to scale and brightness, as described in Section II-A. This
normalization ensures that image regions have the same size and
brightness range as the eigenvectors that constitute the universal
eigenspace. The normalization also renders the recognition system
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b Fig. 6. (a) An input image. (b) The input image is mapped to a point in universal eigenspace. The location of the point determines the object and

]

Fig. 8. Two pairs (A and B) of objects used to test the illumination planning
method.

invariant to imaging optics (magnification® and aperture) and the
intensity of illumination. An image region, after normalization, is
referred to as the input image y.

For recognition, the average c of the entire image set, used to
compute the universal eigenspace, is subtracted from the input image
y. The resulting image is projected to the universal eigenspace to
obtain a point z.

The recognition problem is to find the object p whose eigenspace
representation (manifold in general and curve in our case) the point z
lies on. Here, the source direction ! is known a priori, and so are the
object curves in eigenspace for the direction I. Due to factors such
as image noise, aberrations in the imaging system, and digitization
effects, z may not lie exactly on an object curve. Therefore, we find
the object p that gives the minimum distance », P between its curve

4The image projection model is assumed to be weak-perspective; ortho-
graphic projection followed by scaling.
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Fig. 9. Curves in universal eigenspace obtained for object pair A for three different sources. For display, only the three most important dimensions of
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universal eigenspace are shown. Source 6 (45°) produces the maximum distance between the closest points on the parametric curves of the two objects.

2" (6,) and the input z:

m® ="z - g7 (61) I]. (17)
If h1® is less than a small threshold value, we conclude that the
input image is of object p. The value of 6, that corresponds to /"’
represents the pose of the object in the scene. Fig. 6(a) shows an input
image of the object whose parametric curve is shown in Fig. 4. This
input image is not one of the images in the planning image set used
to compute the universal eigenspace. In Fig. 6(b), the input image
is mapped to eigenspace and is seen to lie close to the parametric
curve of the object.

IV. EXPERIMENTS

First, the setup used to acquire the planning image set is described.
The universal eigenspace is computed from the planning set. The

eigenspace representations of different objects are used to determine
the optimal source direction. Finally, the recognition system presented
in the previous section is used to verify the optimal illumination.

A. Automatic Acquisition of Image Sets

If an object’s geometry and reflectance are known a priori, its
images under different poses and illumination conditions can be
synthesized using image rendering techniques such as radiosity or ray
tracing. Here, we have not assumed that object models are available.
Therefore, we need a mechanism that automatically varies object
pose and illumination and generates image sets. Fig. 7 shows the
setup we have developed for illumination planning. The object is
placed on a motorized turntable and its pose is varied about a single
axis, namely, the axis of rotation of the turntable. The turntable
position is controlled via software and can be varied with an accuracy

\
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Fig. 10. The minimum distance between parametric curves plotted as a function of source number for (a) object pair A, (b) object pair B, and (c)

the set including pairs A and B.

of 0.1°. Most objects have a finite number of stable configurations
when placed on a planar surface. For such objects, the turntable is
adequate, as it can be used to vary pose for each of the object’s
stable configurations.

The objects are illuminated by the ambient lighting conditions of
the environment that do not vary during the acquisition of image sets.
This ambient illumination is of relatively low intensity. In addition,
eight incandescent light bulbs (100 W each) are used to illuminate
the objects from different directions. Of these, only six sources were
used since sources 1 and 8 generate strongly self-shadowed images
of the objects. The light bulbs are uniformly distributed in a plane
around the turntable, and the angle between adjacent light bulbs is
30°. These light sources are activated through software. The planning
problem is to find the optimal light source among the six. Images are
sensed using a 512 x 480 pixel CCD camera, and are digitized using
an Analogics frame-grabber board.

B. Planning Results

Fig. 8 shows the two pairs of objects, namely, A and B, used in
the experiments. For each of the six light sources (2-7), each object
was placed on the turntable and images obtained for 45 different
poses (8° increments of the turntable). For each of the object pairs,
therefore, a planning set with 720 images was obtained. Each image
is automatically segmented and normalized in scale and brightness
as described in Section II-A. Each normalized image is 128 x 128
pixels in size.

The 45 pose images of each object, taken for each of the light
sources, are projected to universal eigenspace to get a set of discrete
points. These points are interpolated using a standard cubic spline in-

terpolation algorithm [9] to obtain a parametric curve. The parameter
of the curve is object pose (f1). Fig 9 shows the curves of the two
objects in pair A, for three different light sources. Since it is difficult
to visualize the curves of two objects in the same space, they are
displayed separately in Fig. 9. The measure Dy, is the same as
4,79 in expression (16). It is computed for each source and is the
minimum distance between the curves of the two objects in eight-
dimensional eigenspace. It therefore represents the worst-case poses
of the objects for each source direction. Note that these poses need
not be among the ones present in the planning image set. Since the
curves are obtained by interpolation, the worst-case poses may lie
in between the discrete poses used for planning. Fig. 10(a) and (b)
shows D, ., plotted as a function of source number for object pairs
A and B, respectively. We see that source 6 (at 45° with respect to the
vertical axis) is found to be optimal for object pair A, while source
5 (at 15°) is optimal for object pair B. Fig. 10(c) shows results for
an object set that includes all four of the above objects (pairs A and
B). Here, all 720 images of the four objects were used to compute
the universal eigenspace, and for each illumination direction four
appearance curves were computed. As seen from Fig. 10(c), source
6 is optimal in this case.

The optimal source direction determined by the illumination plan-
ner is meaningful only if it can be used to accomplish a vision task.
We have used the correlation-based recognition system presented
in Section III to verify the above results. For each light source,
we obtained 45 test images of each object, to use as inputs to the
recognition system. All of these test images are different from ones
used for illumination planning; they correspond to object poses that
lie in between the poses used for planning. Each test image is first
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Fig. 11. Recognition rates for optimal and suboptimal source directions for (a) object pair A, (b) object pair B, and (c) the set including pairs A and B.
For each object a total of 45 test images were used. As the noise level in the input images is increased, the recognition rates decrease but the optimal
source always produces the highest rate. (d) Sensitivity of recognition rate to segmentation errors.

normalized in scale and brightness and then projected to universal
eigenspace. The object in the image is identified by finding the curve
that is closest to the input point in universal eigenspace.

We define recognition rate as the percentage of test images for
which the object in the image is correctly recognized and the
computed pose is within 6°° of the actual pose. Fig. 11(a) compares
recognition rates computed using the optimal source 6 and the
suboptimal source 2, for object pair A. To test the sensitivity of

the optimal source, we added white noise to the test images. The -

noise level is given in decibels of signal to noise ratio, i.e., 10
log,, (S/N); a noise level of —10 dB corresponds to noise that
is 10 times the signal. Note that the noise levels added to the
test images are substantial. As noise increases, the recognition rates
naturally decay but the optimal source 6 consistently produces higher
recognition rates than source 2 (used as an example nonoptimal
source). Fig. 11(b) shows similar results for object pair B; optimal
source 5 suggested by the planner produces consistently higher
recognition rates than source 2 as image noise is increased. Fig. 11(c)
shows the validity of optimal source 6 for the set including all
4 objects. These results demonstrate the robustness of the source
selected by the illumination planning method to image noise.

In Fig. 11(d), the effects of segmentation error on the planning
result are explored. Again, the object region is first segmented from

3This pose tolerance was selected arbitrarily. It is used to ensure that the
optimal source yields the highest accuracy not only in object identification
but also in pose estimation.

each of the 720 test images and scale normalized to fit a 128 x
128 pixel image, as described in Section II-A. Then segmentation
errors are introduced in each normalized image by shifting the object
region in a randomly selected direction (+x, —z, +y, or —y) by some

percentage of the image dimension (128 pixels). The resulting image ‘g

emulates one with segmentation error. In Fig. 11(d), the segmentation
error, or percentage shift, is plotted along the horizontal axis. As this
error increases recognition rate deceases. However, the optimal source
is seen to always produce higher recognition performance than the
suboptimal one.

V. DISCUSSION

We have presented a method for determining illumination pa-
rameters that make a set of objects maximally different from each
other in the correlation sense. The proposed approach was shown
to be effective in improving the performance of a correlation-based
recognition system. Such recognition systems are widely used in
industry for object identification and classification.

The illumination planning method uses samples of the objects of
interest and does not require that geometry or reflectance of the
objects be known. An object could have complex geometric features
or varying reflectance properties, or produce specular reflections,
or even interreflections. Since illumination planning is based on
object appearance, none of the above effects need be analyzed in
isolation.
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The parametric eigenspace representation enables us to determine
an illumination that is optimal when the poses of the objects are
unknown. The planning process is further simplified if the poses of
the objects are in fact fixed. In this case, the eigenspace representation
of each object is a point and only the distances between points need
be computed to determine the optimal illumination.

In the experiments, a single parameter was used to represent
object pose (rotation) for a given stable configuration. For certain
applications, three degree of freedom (DOF) may be needed to
describe object pose. In such cases, for any given illumination, object
appearance is represented in eigenspace as a 3-DOF manifold. This, of
course, involves the acquisition of a larger number of object images
for each illumination. Further, illumination itself can be described
using additional parameters, including source size, distance, color,
and the number of sources. In [7], optimization of illumination color
is described and demonstrated by experiments.

The planning approach can also be used to simultaneously optimize
multiple parameters. The only requirement is that these parameters
be varied during the acquisition of the planning image set. Clearly,
for multiple parameters, acquiring image sets, computing parametric
eigenspaces, and determining the optimal parameter values can be
very time consuming. Therefore, our planning method may prove
impractical when more than three illumination parameters must be
jointly optimized. A lesser number of parameters, however, can be
easily accommodated since ililumination planning is typically done
off-line and only once. As a result, it is generally not subject to
severe time constraints. '
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