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Abstract

Cole, 1.B., H. Murase and S. Naito, A Lie group theoretic approach to the invariance problem in feature extraction and object

recognition, Pattern Recognition Letters 12 (1991) 519-523.

We derive a formal solution to the invariance problem and construct it using Lie group generators. Representations of these
generators with respect to image data are discussed. Group theoretical obstacles to three-dimensional invariant recognition and

possible solutions are considered.
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1. Introduction

A major goal of image analysis is to recognize
objects and to extract features from their images
independently of the positions, orientations and
sizes of the objects.

Let x be a set of image data from some object,
and let f be a function which operates on x to yield
the information f(x). If the image data change
from x to Sx when the object ‘moves’ in some way
(e.g., translation or rotation), then in general
S(Sx)#f(x). S is an operator that acts on x, the
‘old’ data to give the new image data, Sx. Since the
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original object remains physically unchanged, one
would like to find an ‘invariant’ function g such
that

8(8x) = g(x). 1

This is a very difficult problem to solve in general.
If S is an element of a Lie group, however, it is
possible to construct a formal solution of (1) (see
for example (Belinfante and Kolman, 1972) or
(Schultz, 1990) for a review of Lie groups). We
seek an operator, 7, that acts on f such that

Tf(Sx) = f(x). 2

T changes f in such a way as to ‘compensate’ for
the change from x to Sx. It is straightforward, as
we will show, to find 7.
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2. Formal solution

We assume that the image data can be represented
in the form x=(x',x%...), where x' (i=1,2,3,...)
are ‘coordinates’ that could represent the pixel
brightnesses in the scene or which could be the
coefficients in some kind of ‘expansion’ such as
that described by (Roseborough and Murase, 1990).
For simplicity, we take f(x) to be a real scalar func-
tion. Let S(9) be a transformation characterized by
the parameter set 6=(6',6%6>...). S can be any
operation such as translation, rotation, or dilation
that forms a Lie group. An infinitesimal transfor-
mation is given by

S(df) =1+db'G; 3)

where the G; are the group generators and dé' are
infinitesimal. Throughout this paper, unless other-
wise specified, we sum on upper and lower
repeated indices in accord with the Einstein summa-
tion convention. A group generator is defined as

G; =1im (S(8) - 1)/6'
-0

a
_BTJ"S(H) oo’ “4)

where S(0)=1 by definition. Applying an in-
finitesimal transformation, S(d@), to x, we obtain

S(df) x = x+do'G, x. (5)

Now making the substitutions x — S(df)~!x and
S—8(d6) in (2), where S(8)~! denotes the inverse
of §(8), we find

Tf(x) = f(S(dg)™'x). (6)
For Lie groups

S(d6)™! = S(-df)=1-do'G,,
thus

S(d8)'x = x—do'G,; x.

Substituting into (6) and expanding in a Taylor
series up to the first order in df, we obtain

Tf(x) = /() ~ d6/(G, x)’ 8, /(x), ™

where (G;x)/ denotes the J-th component of
(G;x), and d; f(x) denotes the partial derivative of
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J with respect to x’. T thus depends on 4 and its
infinitesimal form, 7(d#), is given by

T(d§) =1-d6'(G, x) 9,. (8)
The generators of T, H,;, are thus
H; = —(G; x)/ 9;. 9

From the theory of Lie groups, a finite Lie group
transformation can be expressed in terms of its
generators by

T(6) = ¥, (10)

See (Lenz, 1990) or (Kanatani, 1990) for more
details of this derivation.

Defining f*(x, 8) = T(8) f(x) and expanding (10)
we obtain

F*(%0) =T(6) f(x) = e G2V p(x
=f(x)=8'(G;x) 3, f(x)

+ % 0'6/(G; x)' 3,((G; x)* 3, f(x))
4o (11)
S*(x,0) satisfies (1) in the sense that
F*(x,0) = f*(S()' x,0).

Although f is arbitrary, in order to actually con-
struct f*(x, #), its derivatives must be sufficiently
‘well behaved’ that the series in (11) converges.
Although f*(x, 8) is an invariant function, it con-
tains g, whose value is usually not accessible from
raw image data.

But knowing 7, another approach is now pos-
sible. We can attempt to solve the differential
equation

WOVENS (12)

for f. This is usually a difficult problem but it is
relatively easy to find a class of “first-order’ solu-
tions, as we shall later see.

3. Constructing an invariant image function

We now discuss how to actually construct S*(x, 6)
with respect to some transformation. For simplicity,
we take S(A) to be a one-parameter Lie group.
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Making the replacements G;—» G and 6' -4, (11)
becomes

S*60) = f(x) - 8(Gx)' 8; f(x)

. % 6%(Gx)’ 3,((Gx)' 3, £(5))

- .3.17 6%(Gx)* 3,((Gx)’ 3,((Gx)' 8, f(x))

+ e (13)
Calculating the derivatives, we obtain
F*(x,0) = f(x) - 6(Gx)' 3, £(x)

+% 02{(Gx) (Gx)? 9; 8, f(x) + (G2x)' 3, ()}

- 016 (G0 (Gx)* 0,8, /)

+2(G*x) (Gx)! 8; 8; f(x) +(G*x)" 9, f(x)}

T (14)
Now if we choose f=f1, where £ satisfies

(Gx)' 8, f =0, (15)

the second term on the right in (14) vanishes along
with parts of the higher order terms. By postu-
lating a form for £V, a class of ‘first-order’ solu-
tions to (12) can be determined. Such solutions
may be useful in practical problems.

Now, to proceed further, we must determine the
group generator, G.

4. Lie group generators for image data

Let us represent x as an n X 1 column vector, and
let {e;} (i=1,2,...,n) be any complete set of
orthonormal basis vectors that could be used to
represent the image data, such as the Walsh pat-
terns. Expanding x in the form x=}, x'e;, a rep-
resentation for G in terms of an nXxn square
matrix in terms of the {e;} can be found. Re-
arranging (5), making the substitutions x— e,
G; — G and multiplying on the left by e,T, we find,
using the definition of G,

e/ (S(df)e;—e;) = df €] Ge;
=do G, (16)
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To determine G, we apply an infinitesimal trans-
formation, §(d6), to e; and expand S(df)e;—e; in
the form

S(d)e;~e; = ¥, (de))'e;,

where the (dej)i are the expansion coefficients.
The elements of G are thus

G, = (de;)'/de.

Defining S(f)e; =¢;(8), we can write

i d
Gjl = e;rd—g
where (d/d6)e;(0) denotes the derivative at 8=0.
G is thus determined in the form of an nxn
matrix. This procedure can be carried out either
‘theoretically’ or ‘empirically’ using (16) or (17).
From (16), ij:eiTGej.‘ Inserting a basis vector
expansion of x into (Gx)', it is easy to show that
(Gx) =x/ G;, where repeated upper and lower in-
dices are summed as usual. 7, as given in (14), can
then be expressed as

T*(%.6) = f(x) - 0x/G; 8; f(x)

e;(0), (17

+%02{xkxfcz G/ 9;8,/(x)+x7 (G 3, f(x)}
—es (18)

The foregoing developments have been carried
out without reference to any specific set of basis
vectors. To actually construct f*, however, a ‘suit-
able’ set must be selected, and their transformation
properties defined. These choices then determine
the generator representations. These choices are
not completely arbitrary. Generators of such physi-
cal operations as transiation and rotation must
reflect their corresponding physical properties.
Translation generators in x- and y-directions, Gy
and Gy, respectively, must obey [Gy,Gyl=0
(where [a, b] =ab~ ba), since translating first in
the x-direction and then in the y-direction should
give the same result as performing these operations
in the reverse order.

In a future paper we shall discuss representa-
tions of image data that are suitable for the
analysis outline above, but we illustrate our ap-
proach with a simple example.
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6. Example

Let v be an ‘ordinary’ 2-dimensional column
vector, given by

UT =xe tye,,

where

el=(10) and eJ=(0 1)
are basis vectors. Let e;(0) = S(0)e; be a basis vec-
tor that has been rotated by angle §. We can deter-
mine ‘experimentally’ that

e (0) = (cos B)e, +(sinf)e,
and

e,(6) = (—sin )e, + (cos f)e,.
Using (17) we calculate the G;=ei - (d/df)e; (0)
and find that

Gy=-1, Gi=1, and Gl!=Gi=0.

Now let f=f(x,y) be some arbitrary function.
Substituting fand G into (18), we construct a func-
tion, f* that is invariant under rotations accor-
ding to

f*(X,y,G) :f(x,y)—Hxayf(x7y)+9yaxf(xvy)
+...

A first-order invariant function with respect to
G must satisfy

xayf—yaxfz 0.
It is not difficult to show that one such function is

SOop) = x?+y2

7. Discussion

Most image data are obtained by gathering the
light reflected from the surface of a three-
dimensional object onto a two-dimensional plane.
In this case, S can be expressed in the form S = PQ,
where P is a ‘projection’ operator, and Q is some
operation (such as rotation) on a physical object of
which we have a two-dimensional image. Unfor-
tunately S=PQ is not necessarily an element of a
Lie group even when Q is. With respect to pixel
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brightness data alone, PQ can be guaranteed to
form a Lie group only in certain special cases, such
as when Q is restricted to rotations about an axis
perpendicular to the plane of projection or when
the object has special symmetries. The requirement
that PQ form a group thus constitutes a severe
constraint on Q with respect to pixel brightness
data.

If we use a set of basis vectors that contain
‘extra’ information about an object (for example,
the appearance of occluded surfaces or texture in-
formation), such as the eigenvectors described by
(Roseborough and Murase, 1990), S may have Lie
group properties even though it is not a Lie group
element with respect to a pixel brightness represen-
tation. This topic will be explored in a later paper.

The human perception systsm is able to solve the
invariance problem in a wide variety of situations
even when S is not a Lie group element with respect
to pixel brightness data. The perception system
utilizes many cues such as shading and curvature as
well as prior knowledge along with a priori assump-
tions to extract information from an image. We
might say that this process amounts to a modifica-
tion of P to a new operator P* such that S=P*Q
is an element of a Lie group for a wide class of
operations, Q. An interesting topic for future work
is to study P*.

We wander from a firm mathematical founda-
tion, but even if S=PQ only ‘approximately’
satisfies the properties of a Lie group, f*(x, ) as
given by (11) may be ‘approximately’ invariant and
‘reasonable’ first-order solutions of (12) may still
be possible. Such questions can only be addressed
empirically.

8. Summary

If S(8) is a Lie group transformation on a set of
image data, x, an invariant function f*(x, ) can be
constructed according to (11) that formally satis-
fies (1). To find an invariant function that is in-
dependent of #, one must solve (12). General
solutions are difficult, but it is relatively easy to
determine a set of ‘first-order’ solutions by solving
(15). Although it is difficult to actually solve (12),
€gs. (14) and (18) yield criteria for constructing im-
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age invariants. If we want invariance with respect
to more than one image transformation, the
general development of Section 2 must be applied.

The requirement that S be a member of a Lie
group constitutes a severe constraint with respect
to pixel brightness data alone, but may be less of
a constraint with respect to other image represen-
tations.
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