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ABSTRACT. Driving support techniques using in-vehicle sensors have attracted much at-
tentions and have been applied to practical systems. We focus on supporting drivers in
poor visibility conditions. Fog is one of the causes that lead to lack of visibility. In this
paper, we propose a method of judging fog density by using in-vehicle camera images and
millimeter-wave (mm-W) radar data. This method determines fog density by evaluating
both the visibility of a preceding vehicle and the distance to it. Ezperiments showed that
Judgments made by the proposed method achieve a precision rate of 85% when compared
to the ground-truth obtained by human judgments.

Keywords: Weather recognition, Fog, Visibility, ITS.

1. Introduction. Recently, many systems have been developed that use computers and
various sensors to assist driving [1]. Some notable examples include self-steering by white-
line detection, a rear-end collision-prevention system that operates by measuring the
distance to the vehicle ahead, a danger notification system that recognizes pedestrians,
and a system that automatically operates the windshield wipers upon recognizing rain
drops[2][3].

When considering a driving assist system, we cannot ignore changes in weather con-
ditions, since in such adverse weather conditions as rain, snow, or fog, driving is more
difficult than in fair conditions, leading to a significant increase in the accident rate. Ac-
tually, in Japan, it is said that accident rates in bad weather conditions are about 17
times higher than that in fair conditions.

In this paper, we focus on fog detection. Though fog negatively influences human
perception of traffic conditions gradually, drivers are not aware of this. This is the cause
of making dangerous situations. According to Cavallo et al., under foggy conditions the
distance between a preceding vehicle’s tail lamp is perceived to be 60% further away than
under fair conditions [4]. This leads to the need of driving assist systems, such as danger
alerts or automatic lighting of fog lamps.

1173



1174 K. MORI, T. TAKAHASHI, 1. IDE, H. MURASE, T. MIYAHARA AND Y. TAMATSU

' T High
T Visibility

(a). Nearby case

. Low
g - visibility

Camera KF /
i (oo

(b). Distant case

FIGURE 1. The visibility of a preceding vehicle varies depending on the
distance to it.

Considering these problems, we propose a method that classifies fog density into three
levels using in-vehicle camera images and millimeter-wave (mm-W) radar data. The image
from the in-vehicle camera reflects the driver’s visual conditions, vital when driving. This
is the prime advantage of using an in-vehicle camera. We also evaluate the degradation
in visibility of images that are captured in foggy conditions, especially by focusing on the
change in visibility of a preceding vehicle. We must also take into account the distance
to the targets to determine the fog density, because under the same fog condition, nearby
objects are easy to see while distant objects are not (Figure 1). We therefore use a mm-
W radar together with an in-vehicle camera to obtain reliable distance information. The
proposed method is composed of the following two steps:

e Extract a visibility feature from an image of a preceding vehicle captured by an
in-vehicle camera

o Classify the fog density into three levels considering the visibility feature and the
mm-W radar data

This paper is organized as follows. In Section 2, some works are introduced that deal with
features of fog images captured while driving. Koschmieder’s model [5] that expresses the
degradation of brightness by atmospheric scattering is also explained using actual images
in this section. The proposed method is described in Section 3. Experiments to show the
potential of the proposed method are reported in Section 4 and the paper is summarized
in Section 5.

2. Related Works.
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FIGURE 2. The brightness degradation with distance (k = 0.1): (a) Ly is
smaller than Ly; (b) Lo is larger than Ly.

2.1. Fog image processing for driving support. Hagiwara proposed a method that
evaluates the road visibility and the features of images captured from a digital still cam-
era in foggy conditions [6]. Kuwon proposed the concept of Mortorists Relative Visibility
(MRV) in [7]. MRV is calculated using the amount of recognizable objects in the sur-
rounding area, average luminance and acuity of objects measured by contrast in the image.
These works suppose the use of large numbers of still cameras installed along the roads.
It may not accurately reflect a driver’s visual condition and is a very expensive system to
establish. And so, we use in-vehicle camera images that could be expected to reflect the
driver’s visual condition.

Some works try to estimate the visibility while driving a vehicle. Hautiere et al. pro-
posed a method that estimates visibility distance using a stereo camera, and evaluated the
degradation of visibility distance in foggy conditions compared with a fair one [8]. Leleve
and Rebut tried to estimate visibility using an in-vehicle camera for fog lamp automation
[9] and proposed a method to support night driving using the halation of the car’s own
headlights. But the distance estimated from only visual information in these works is not
reliable, because it includes some error from the differences of the attitude of the vehicle
or the surrounding environment. To overcome these problems, we use a mm-W radar that
can measures distances to preceeding objects.

2.2. Koschmieder’s model. Koschmieder’s model expresses the degradation of bright-
ness, as represented as follows:

L = Loe™* 4+ L;(1 — %) (1)

where L is the observed luminance, Lo is the intrinsic luminance of an object, Ly is the
luminance of the sky, k is the extinction coefficient of the atmosphere, and d is the distance
to the object. This model represents that it is difficult to recognize an object in conditions
where the extinction coefficient is high, because in such conditions, L approaches Lj.
Figure 2 shows the brightness degradation with distance when k = 0.1. The horizontal
axis represents d and the vertical axis represents L.

This model represents two effects of fog in images;

a: Contrast becomes low.
b: Images are whitened.
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FIGURE 3. (a) Image captured in fair condition, (b) Image captured in
foggy condition.
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FIGURE 4. (a) Brightness histogram corresponding to Figure 3(a), (b)
brightness histogram corresponding to Figure 3(b).

Figure 3(a) was captured in fair weather, while Figure 3(b) was taken in a foggy condition.
Both images include the same vehicle. If fog becomes dense, k becomes large, which makes
e~* approach to 0, and the value of Lye*¥ becomes small, therefore, the variation of the
histogram becomes small and the contrast of the image degrades. On the other hand,
L(1 — e ) becomes large and the distribution of the histogram shifts to the bright side.
This leads to the whitening of the images. We can see these phenomena in actual data
shown in Figure 4 that shows the histogram of image shown in Figure 3.

Using this model to model the brightness deterioration, Narashimhan and Nayar pro-
posed a method that restores the contrast of images captured in adverse weather condi-
tions, especially foggy conditions [10].

3. Fog Density Recognition by in-vehicle Camera and mm-W Radar. In this
section, we explain the proposed method in detail. Figure 5 shows the flow of the method
and its three steps, “Clipping of the preceding vehicle,” “Evaluation of visibility,” and
“Judgment of fog density”. Based on Koschmieder’s model, fog density is judged using
both the distance to a preceding vehicle and the visibility calculated from the region of
the preceding vehicle.

3.1. Clipping of the preceding vehicle. To evaluate the visibility of the preceding
vehicle, first we clip the preceding vehicle image from the captured image. Recently,
obstacle detection techniques are widely researched [11][12]. In foggy conditions, however,
it is difficult to achieve accurate detection using these techniques.
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FIGURE 5. Flowchart of the proposed method.
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FIGURE 6. Clipping of the preceding vehicle image.

First we spot a candidate area by using distance information to the preceding vehicle.
This information is provided by the mm-W radar. Next, the accurate position of the
preceding vehicle region are detected by template matching in the candidate area, referring
to the dictionary image. Figure 6 shows the process of the clipping.

The clipping accuracy was 90.17% when the method was applied to 4,149 images. All
the images included a preceding vehicle. The judgment whether the images were correctly
clipped was done manually. In this paper, the preceding vehicle is the same vehicle in
all images. At present, we only consider a specific vehicle as the preceding vehicle, so

a dictionary image manually cropped from a captured image was used for the template
matching.

3.2. Evaluation of visibility. When fog appears, the outline of a preceding vehicle
becomes more difficult to distinguish than in a fair condition because the captured images
become whitish and blurred. This is the point on which we focused. Since contrast in
images captured in foggy conditions becomes low, we considered that the amount of high-
frequency energy should also decrease in the frequency representation. Figure 7 shows two



1178 K. MORI, T. TAKAHASH]I, 1. IDE, H. MURASE, T. MIYAHARA AND Y. TAMATSU

Fair Condition . Foggy Condition

Vehicle image

Frequency representation g&

FIGURE 7. Vehicle images captured in fair and foggy conditions and their
frequency representations.

images and the corresponding DCT (Discrete Cosine Transform) images. The left hand
side image was captured in a fair weather condition, while the right one was captured in
a foggy condition. DCT transforms discrete signals into frequency domain. The value of
the most upper left pixel represents the energy of the DC component that represents the
lowest frequency component. On the other hand, the most right bottom one represents the
highest frequency component. From Figure 7, we confirmed that high frequency energy
of a foggy image is obviously less than that of a fair image.

Considering this loss of contrast, we define an indicator that represents the visibility of
a preceding vehicle. First, the image of the preceding vehicle is resized to 32 X 32 pixels
by linear interpolation. The resulting image is then converted into the frequency domain
by DCT. In the frequency domain, pixels with the same Manhattan distance n from the
zero-frequency pixel (0,0) belong to the n-th group. The n-th group’s total energy is

defined as follows:
E(n) =YY IL(ij) (2)
i g
where I,,(i, j) satisfies the following equation.

o I, i+j=n
In(z,J)—{ 0 otherwise @

Here, I(i, j) represents the power spectrum of a pixel located at (z, 7). The mean energy
M (n) equals to E(n) divided by the number of pixels in the n-th group. The indicator is
defined as the smallest n such that AM(n) is less than a pre-defined threshold.

Figure 8 shows sample images and corresponding indicator values. An exploratory
experiment with human subjects was done to investigate the relation between human
perceptions of visibility and the indicator. From the result, we confirmed that the pre-
ceding vehicle becomes indistinguishable in proportion to the decrease in the indicator
value. Note that we replaced the pixels in the tail-lamp regions with the mean brightness
of the entire vehicle region, since lighting tail lamps on and off can negatively affect the
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FIGURE 8. Sample images and corresponding indicator values.

indicator. This process was done automatically using the fact that tail lamps of a vehicle
image are generally in fixed positions.

3.3. Judgment of fog density. Here, we introduce a system that classifies fog density
into three classes by referring to both the visibility indicator and the distance information.

Using the visibility indicator alone is insufficient to determine the fog density, since in
the same fog condition, nearby objects are easier to distinguish than distant ones.

Visibility-meters are often used to measure fog density. In our work, however, we
focus on driver’s perception rather than on such physical visibility measures to determine
classes of fog density instead. The classes, which reflect human perceptions, are “dense”,
“moderate”, and “light”.

To judge the fog density, the relationship between the indicator and the distance had
to be learned for each class. This relationship is represented as:

I=ae™ 4 (4)

where [ is the indicator value and d is the distance. This exponential function is obtained
from Eq.(1), when Lo and L are assumed to be invariables. For each classes, the unknown
parameters a, b and c are calculated so that the exponential curve gives the minimum
squared error to the training data.

To classify input data, the distance between the input data and each regression curve
is measured. The input data is then classified to the class of the nearest regression curve.

4. Experiments. In this section, we report the results of experiments to show the perfor-
mance of the proposed method. We first explain the data acquisition and the preparation
of training data and then report the results obtained by applying the proposed method.
Note that in this experiment, we manually excluded clipped images without a correctly
detected preceding vehicle.

4.1. Data collection. We equipped a car with an in-vehicle camera and a mm-W radar.
We used a mm-W radar to obtain the distance information instead of a laser or a
supersonic-wave radar. This is because, compared with laser or supersonic-wave radar
that is easily influenced by bad weather conditions, especially fog when rays scatter, mm-
W radar is robust to such conditions. The mm-W radar gave two kinds of information,
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TABLE 1. Specifications of in-vehicle camera.

| Parameter | Value B
Resolution 640 X 480 pixels
Frame rate 10 frames / second
Scan mode Interlace
Representation Gray scale
Number of tone 256

TABLE 2. Specifications of the mm-W radar.

[ Parameter | Value |
Relative velocity -200 to 100 km/h
Azimuth angle range -10 to 10 degree
Processing cycle time 100 ms
Operating frequency 76 to 77 GHz
Modulation principle FM-CW
Azimuth detection method || Electronic scanning
Range accuracy 3%
Range resolution 1.5m
Azimuth accuracy 0.5 degree
Azimuth resolution 5 degree

distance to preceding objects and relative speed to them. From the information, our sys-
tem finds the position of a preceding vehicle in the captured images. Table 1 and Table
2 show the specifications of the in-vehicle camera and the mm-W radar that was used.
Detailed specifications of the mm-W radar are described in [13].

The data for the experiments were collected by driving a vehicle in both fair and foggy
conditions, at a speed of 40 km/h to 60 km/h.

4.2. Preparation of training and test data. To design the classifier, we need training
data for each class. The training data were prepared by the following procedure, in which
we used images captured while driving a vehicle. For the experiment, we use the data
captured when the distances to the preceding vehicle were from 20m to 60m. Five sets of
images were tested, where one set included ten images chosen randomly from the captured
images. Four different human subjects, each with a valid driver’s license, participated in
the experiment. The subjects were asked to conduct the following two steps for each set.

e Sort the ten images in order of fog density.

o Classify the ten images into three classes: “Dense Fog,” “Moderate Fog,” or “Light
Fog.”

From the results of this experiment, we obtained an appropriate class for each training
image, complying with human perception.
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FIGURE 9. The distribution of training data.

TABLE 3. Comparison of judgments by the proposed method and by hu-
man subjects. Numbers in parentheses in diagonal elements represent the
precision rate of each class.

By the proposed method
Light Fog | Moderate Fog | Dense Fog
Light Fog [ 51 (100%) 0( 0%)| o( 0%)
By the human subjects | Moderate Fog | 9 ( 13%) 59 (82%) | 4( &%)
Dense Fog 0( 0%) 17 ( 22%) | 60 ( 78%)

4.3. Evaluating the judgments. We compared the judgments attained using the pro-
posed method and that by human subjects. In the following experiments, the test data
set was different from the training data set. Because four subjects evaluated the same set
of images, some images were classified into different classes.

We took this into account and allowed an image to belong to multiple classes, using the
number of subjects who classified a certain image into a class as the weight of training
data in that class. Figure 9 shows the distribution of the training data and the calculated
regression curve in indicator-distance coordinates.

The results are presented in Table 3, which shows the confusion matrix for judgment
by the proposed method and that by the human subjects. The overall precision rate
for all classes was 85%. In the experiment, however, we dealt with only one vehicle. In
reality, the indicator is affected by the variety of colors and shapes of vehicles, though the
indicator should not be affected by these variances for reliable judgment of fog density.
Thus, the development of other visibility indicators is one of our next challenges.

5. Conclusion. In this paper, we proposed a method that classifies fog density according
to a visibility feature of a preceding vehicle and the distance to it. We obtained promising
results through an experiment using actual data collected from an in-vehicle camera while
driving the vehicle. From the results, we confirmed that the proposed method could make
judgments that comply with human perception.

In future, we will develop a new visibility indicator that does not vary depending on
the type or color of the preceding vehicle. In addition, we will consider a situation when
there is no preceding vehicle at all.
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