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Multiple Human Tracking Using an Omnidirectional Camera with
Local Rectification and World Coordinates Representation
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SUMMARY Multiple human tracking is widely used in various fields
such as marketing and surveillance. The typical approach associates hu-
man detection results between consecutive frames using the features and
bounding boxes (position+size) of detected humans. Some methods use an
omnidirectional camera to cover a wider area, but ID switch often occurs
in association with detections due to following two factors: i) The feature
is adversely affected because the bounding box includes many background
regions when a human is captured from an oblique angle. ii) The posi-
tion and size change dramatically between consecutive frames because the
distance metric is non-uniform in an omnidirectional image. In this paper,
we propose a novel method that accurately tracks humans with an asso-
ciation metric for omnidirectional images. The proposed method has two
key points: i) For feature extraction, we introduce local rectification, which
reduces the effect of background regions in the bounding box. ii) For dis-
tance calculation, we describe the positions in a world coordinate system
where the distance metric is uniform. In the experiments, we confirmed
that the Multiple Object Tracking Accuracy (MOTA) improved 3.3 in the
LargeRoom dataset and improved 2.3 in the SmallRoom dataset.
key words: multiple human tracking, data association, omnidirectional
camera

1. Introduction

Multiple human tracking is a fundamental technique and
widely used in various fields such as marketing, surveil-
lance, and virtual reality. The task of multiple human track-
ing is to achieve continuous detection of multiple humans
while maintaining their identities (ID) given time-series im-
ages [1]. In a large-scale practical system, one approach that
is efficient is to transmit captured images to a server and pro-
cess them collectively. In such a system, it is expected that
the frame rate is low in terms of keeping bandwidth or data
storage.

Most state-of-the-art tracking methods [2]–[7] are
based on a tracking-by-detection approach owing to detec-
tion accuracy improvement. The tracking-by-detection ap-
proach achieves multiple human tracking by iterative data
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association [8]. The data association matches detection re-
sults between consecutive frames with an association met-
ric.

Human detection is making remarkable advances based
on deep learning (e.g. Faster R-CNN [9], YOLO [10], and
SSD [11]), and the detection accuracy has significantly im-
proved. The use of Convolutional Neural Networks (CNNs)
is one of the most important deep learning methods, and
can extract powerful discriminative feature representations.
Most tracking-by-detection approaches use both features
and bounding boxes (position+size) for the association met-
ric, and utilize CNNs for feature extraction and bounding
box estimation. In this work, we employ powerful deep
learning methods.

Conventional deep-learning-based tracking meth-
ods [2]–[7] have commonly used a normal camera. In addi-
tion to a normal camera, in recent years, an omnidirectional
camera has been used for tracking. The omnidirectional
camera has a 360-degree view, and can cover a wide area
using a single camera. Therefore, the omnidirectional cam-
era reduces initial costs and subsequent maintenance costs
(e.g. costs associated with setup, labor, repairs, and software
licensing) compared to those of a normal camera. In this
study, we utilize only one omnidirectional camera.

However, it is difficult to simply apply the deep-
learning-based tracking method [2]–[7] to an omnidirec-
tional image. While omnidirectional images have seri-
ous distortions, most deep-learning-based detection meth-
ods [9]–[11] estimate the human region as a simple axis-
aligned bounding box. When applying these methods to om-
nidirectional images, ID switch, which means the target hu-
man ID changes to another ID, often occurs. ID switch oc-
curs due to following two factors. i) The feature is adversely
affected because the bounding box includes many back-
ground regions when a human is captured from an oblique
angle (Fig. 1 (a)). ii) The position and size change dramati-
cally between consecutive frames because the distance met-
ric is non-uniform (Fig. 1 (b)).

Some tracking methods use omnidirectional cameras
exclusively. Most of them rectify the entire omnidirec-
tional image (expand to a panoramic image, hereinafter,
global rectification) before initiating tracking [12]–[18]. In
the rectified image, the angle of the human can be nor-
malized. However, the bounding box includes many back-
ground regions because there is serious distortion when the
human’s position is around the center in the original image.

Copyright c© 2020 The Institute of Electronics, Information and Communication Engineers



1266
IEICE TRANS. INF. & SYST., VOL.E103–D, NO.6 JUNE 2020

Fig. 1 ID switch is caused by two factors because an omnidirectional
image has serious distortions.

Therefore, the above two factors illustrated in Fig. 1 are not
solved.

In this paper, we propose a novel method that accu-
rately tracks humans with an association metric for omnidi-
rectional images. Note that the proposed method works for
omnidirectional images captured by a camera fixed on the
ceiling. The proposed method has two key points: i) For
feature extraction, we introduce local rectification, which
rectifies the human regions locally (not the overall image).
It reduces the effect of background regions in the bounding
box. ii) For distance calculation, we describe the positions
in a world coordinate system where the distance metric is
uniform. The proposed method (above two points) can be
added to other arbitrary state-of-the-art trackers and improve
the tracking accuracy of those trackers.

Our main contributions are as follows:

• We propose local rectification for reducing the effect of
background regions when extracting features.
• We describe the human position in a world coordinate

system where the distance metric is uniform.
• For above two contributions, we utilized a 3D-human

model which is robust against unstable human detec-
tion.

The rest of the paper is organized as follows. First,
we review related work in Sect. 2. Then, we describe the
proposed method in Sect. 3, and conduct the experiments in
Sect. 4. Finally, we conclude our work in Sect. 5.

2. Related Work

In this section, we review multiple human tracking methods
in relation to the type of camera, rectification, and use of
deep learning. Table 1 shows related work compared to ours.

A) Many state-of-the-art tracking methods use normal
cameras [2]–[7] and are based on a tracking-by-detection
framework. Bewley et al. proposed SORT, which utilizes
only bounding boxes for data association [2]. Wojke et al.
extended SORT [2], and data association is performed us-
ing not only the bounding boxes but also features [3]. Both
features and bounding boxes are estimated by deep learning.

B) Many methods that globally rectify omnidirectional

Table 1 Related work in terms of camera, rectification, and tracking-by-
detection. Details of A), B), and C) are described in Sect. 2.

Camera Rectification Tracking-by-detection

A) [2]–[7] Normal - Yes
B) [12]–[18] Omni Global rectification No
C) [19]–[22] Omni - No
Ours Omni Local rectification Yes

images before the tracking have been proposed [12]–[18].
In a globally rectified image, the angle of the human can be
normalized. Gächter utilized the temporal and background
change detection [12]. Cielniak et al. proposed a method
that performs human extraction and applies a Kalman fil-
ter [14]. Liu et al. proposed a method that detects a hu-
man based on a background model, and a greedy data as-
sociation is performed [13]. Kobilarov et al. introduced a
method that utilizes a Kanade Lucas Tomasi (KLT) tracker
and performs data association with a Probabilistic Data As-
sociation Filter (PDAF) [15]. Song et al. proposed a method
that rectifies only part of the outside image, and a human is
tracked using a particle filter [16]. Kawasaki et al. combined
static and dynamic background subtraction [17] for the hu-
man tracking. Delforouzi et al. introduced a method that
can detect unknown objects based on a Training-Learning-
Detection (TLD) scheme [18]. Yao et al. proposed a method
that applies vertical vanishing point mapping to a normal
image [23]. These methods reduce the dramatic changes in
the bounding box position between consecutive frames if a
human moves in the horizontal axis direction in the rectified
image.

C) Several methods track humans in omnidirectional
images without rectification [19]–[22]. Chen et al. proposed
a method that tracks a human by Markov Random Fields
(MRF) [19]. Zhang et al. proposed a method that extracts
a human region by matching the foreground region and 3D-
human model [22]. The foreground region is estimated by
background subtraction. Rameau et al. introduced a method
that tracks humans using a particle filter, the state vector of
which is based on a sphere [20]. Cinaroglu et al. proposed
a method that detects humans using a sliding window based
on a Riemannian metric [21].

In A), ID switch often occurs due to following two fac-
tors. i) While images captured by the omnidirectional cam-
era have serious distortions, most deep-learning-based de-
tection methods estimate only a simple axis-aligned bound-
ing box. The feature is adversely affected because the
bounding box includes many background regions and the
human’s angles vary when a human is captured from an
oblique angle. Although semantic segmentation meth-
ods [24], [25] can be used for background reduction, they
incur a heavy computational cost. ii) The position and size
change dramatically because the distance metric is non-
uniform. In B), the bounding box includes many back-
ground regions because the area around the center of the
image is excessively expanded. In C), since most methods
are not based on the tracking-by-detection approach, it is
difficult to incorporate existing deep-learning-based detec-



NISHIMURA et al.: MULTIPLE HUMAN TRACKING USING AN OMNIDIRECTIONAL CAMERA WITH LOCAL RECTIFICATION
1267

tors that rely on normal images.

3. Proposed Method

The proposed method has two keypoints. i) We introduce
local rectification, which rectifies only the human region in
order to reduce the effect of background regions. ii) We de-
scribe the positions in the world coordinates where the dis-
tance metric is uniform in order to avoid dramatical changes
in the position and shape.

The proposed method is based on the tracking-by-
detection approach. The overall process of the proposed
method is shown in Fig. 2. After the targeted humans are
detected in the image coordinates (Sect. 3.1), the association
metric is calculated (Sect. 3.2). Using the metric, these hu-
mans are tracked by data association (Section 3.3). The orig-
inal feature of the proposed method is the association met-
ric explained in Sect. 3.2. The regions are locally rectified
and the features are extracted from the regions (Sect. 3.2.2).
Also, the positions of the targeted humans are estimated in
the world coordinates (Sect. 3.2.3).

Before describing the proposed method in detail, allow
me to formalize the multiple human tracking. Let o f be an
omnidirectional image at frame f . Let T f = (t f

1 , t
f
2 , · · · , t f

Nt
)

be tracklets at frame f , where t f
i is the i-th tracklet. Let

Bf = (b f
1 ,b

f
2 , · · · ,b f

Nb
) be bounding boxes at frame f , where

b f
j is the j-th bounding box. The multiple human tracking

is formalized as the problem of sequentially estimating T f

where T f−1 and o f are given.

Fig. 2 Overall process of the proposed method. First, the targeted humans are detected in the image
coordinates. Second, the regions are locally rectified, and the features are extracted from the regions. At
the same time, the positions of the targets are estimated in the world coordinates. Finally, these humans
are tracked by data association using the features and positions of the targeted humans.

3.1 Human Detection in Image Coordinates

For each frame f , humans are detected by the deep-learning-
based detection method. Each bounding box b f

j is defined
as a normal rectangle, and is represented by n = (x, y, w, h).
x and y are the x-axis and y-axis in the upper left of the
rectangle in an omnidirectional image. w and h are the width
and height of the rectangle in an omnidirectional image. n
is calculated using a human detector. Although we chose
SSD [11] for the detector in this work, any other detector
can be used. The detector is trained using omnidirectional
images in advance.

3.2 Proposed Association Metric

The local rectification (Sect. 3.2.2) and human position esti-
mation in the world coordinates (Sect. 3.2.3) are performed
using the bounding boxes obtained in Sect. 3.1. Before these
estimations, the estimator is trained in advance (Sect. 3.2.1),

In the proposed method, the bounding box b f
j is de-

fined as a rotated rectangle, and is represented by r =
(xr, yr, wr, hr, φ). xr and yr are the x-axis and y-axis of the
center position of the rectangle. wr and hr are the width and
height of the rectangle. φ is an angle that is oriented clock-
wise. The positive direction of the horizontal axis is defined
as φ = 0. The domain of φ is 0 ≤ φ < 2π. xr and yr are set
as the center of rotation.
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Fig. 3 A 3D-human model is virtually located in the world coordinates,
and a human contour that consists of points is calculated in the image coor-
dinates. Then a normal rectangle and a rotated rectangle are calculated in
the image coordinates.

3.2.1 Training of Rotated Rectangle and Human Position
Estimator

This section describes the method of training the rotated
rectangle and human position estimator. The input of the
estimator is a normal rectangle n = (x, y, w, h) obtained in
Sect. 3.1. The output of the estimator is rotated rectangle
r = (xr, yr, wr, hr, φ) and a position in the world coordinates
q = (q1, q2, 0).

The detection result, n, estimated in Sect. 3.1 is un-
stable because an omnidirectional image has serious distor-
tions. In order to refine the unstable detection result, we
utilized a 3D-human model [22], [26], [27] for training the
estimator. The human regions in various positions are cal-
culated using the 3D-human model. Using these human re-
gions, the rotated rectangles and the footpoint of the tar-
geted human are registered. In this paper, we use a simple
3D-human model that consists of two cylinders (Fig. 3).

For utilizing the 3D-human model, the projection be-
tween the image coordinates and the world coordinates is
important. p = (p1, p2) denotes a position in the image co-
ordinates, and elements of p are values of the x-axis and
y-axis. Also, we denote a position in the world coordinates
as q = (q1, q2, q3), and elements of q are values of the x-
axis, y-axis, and z-axis. The projection from world to the
image coordinates is performed using the camera projection
matrix M ∈ R3×4 [28].

λ · pT = MqT. (1)

A virtual 3D-human model in the world coordinates
and a human contour in the image coordinates are shown
in Fig. 3. Human regions are associated via a footpoint of
the human between the image coordinates and the world
coordinates. For each footpoint p = (p1, p2) in the im-
age coordinates, the following set of procedures is repeated
(1 ≤ p1 ≤ 1280, 1 ≤ p2 ≤ 960).

• p is projected to q = (q1, q2, q3) in the world coor-
dinates by Eq. (1), and a footpoint is determined as
q = (q1, q2, 0).

• A 3D-human model is virtually located in the world
coordinates according to q.
• A human contour that consists of points is calculated

in the image coordinates using the located 3D-human
model. Each vertex in the world coordinates is pro-
jected into the image coordinates by Eq. (1).
• A normal rectangle n = (x, y, w, h) and a rotated rect-

angle r = (xr, yr, wr, hr, φ) are calculated in the image
coordinates using the human contour. Both rectangles
are calculated as a circumscribed rectangle of the hu-
man contour in terms of rectangle area minimization.
• The correspondence between a query vector n and a

rotated rectangle r is registered. Also, the correspon-
dence between the query vector n and a footpoint q is
registered.

Since the query vectors obtained in these procedures
do not cover all possible n, we employ a nearest neigh-
bor search. Kd-tree [29] is utilized to accelerate the nearest
neighbor search. Therefore, if a query vector is input, we
can obtain the corresponding rotated rectangle and footpoint
efficiently.

3.2.2 Local Rectification and Feature Extraction in Image
Coordinates

Local rectification consists of estimating the rotated rect-
angle and rotating it. The rotated rectangle r =

(xr, yr, wr, hr, φ) is calculated by the estimator using a query
vector n. The rotated rectangle r is rotated to be φ = 0
in order that the footpoint is always in the lower part. The
rotation is performed by the following rotation matrix:

R =

(
α −β (1 − α)xr − βyr

β α βxr − (1 − α)yr

)
, (2)

α = cos(−a), β = sin(−a),

where a is an angle of rotation described later. xr and yr are
set as the center of rotation.

Then, the feature a corresponding to the rectangle b is
calculated. Since the image is locally rectified (reduce back-
ground regions and normalize the human angle), the quality
of the human feature is improved. Siamese networks have
two inputs and one output and are often used for person re-
identification [30]–[32]. In this paper, the feature extractor
is trained based on one of the Siamese networks [30]. The
backbone network of the Siamese network is ResNet [33].
While the same human pair is annotated to “1”, a different
human pair is annotated to “0”. While all training images
are based on a normal rectangle without rectification in pre-
vious methods, in the proposed method, all training images
are based on a rotated rectangle with local rectification.

3.2.3 Human Position Estimation in World Coordinates

The footpoint q = (q1, q2, 0) in the world coordinates is ob-
tained from the query vector n through the estimator.
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Table 2 LargeRoom dataset.

Sequence ID 1 2 3 4 5 6 7 8 9 10
Camera ID 1 2 1 2 1 2 1 2 1 2
The number of humans 6 6 6 6 6 6 6 6 6 6
Sequence length [sec] 180 180 180 180 180 180 180 180 180 180

Table 3 SmallRoom dataset.

Sequence ID 1 2 3 4 5 6 7 8
Camera ID 1 2 1 2 1 2 1 2
The number of humans 4 4 10 10 3 3 3 3
Sequence length [sec] 182 182 155 155 268 268 105 105

Algorithm 1 Algorithm of proposed method at frame f .

Input: : o f , T f−1 = (t f−1
1 , t f−1

2 , · · · , t f−1
Nt

)

Output: : T f = (t f
1 , t2,

f · · · )
Calculate Bf = (b f

1 ,b
f
2 , · · · ,b f

Nb
)

for j = 1 to Nb do
Estimate r f

j and q f
j using the estimator.

Extract a f
j using the feature extractor.

end for
for i = 1 to Nt do

for j = 1 to Nb do
Calculate c f eat(t f−1

i ,b f
j ) using a f

j .

Calculate cpos(t f−1
i ,b f

j ) using r f
j .

end for
end for
Apply the Hungarian algorithm to C f eat and Cpos for estimating T f .
Create new tracklets and delete tracklets.

3.3 Data Association

Multiple human tracking is performed by data association
between the human tracking results at the previous frame
and the bounding boxes at the current frame. T f−1 =

(t f−1
1 , t

f−1
2 , · · · , t f−1

Nt
) denotes tracklets at frame f , where t =

(r, id). In the algorithm, a cost matrix C(T f−1, Bf ) ∈ RNt×Nb

is calculated. C(T f−1, Bf ) consists of c(t f−1
i ,b

f
j ) which is

the cost between the tracklet t f−1
i and the bounding box b f

j .
Associated pairs are estimated by solving a linear assign-
ment problem. It is solved efficiently using the Hungarian
algorithm.

We calculate c(t f−1
i ,b

f
j ) based on feature/position, re-

spectively. Therefore, we can obtain two cost matrices, C f eat

based on feature and Cpos based on position. Although there
are several ways of solving the linear assignment problem
using two cost matrices, we introduce a two-step algorithm
in this paper. First, we solve the linear assignment prob-
lem of C f eat. Second, for only unmatched tracking results
in the first stage, the assignment is performed using Cpos.
If c(t f−1

i ,b
f
j ) ¿ ε, c(t f−1

i ,b
f
j ) = ∞ is set. ε is a predefined

parameter, and it is separately prepared for feature ε f eat and
position εpos.

3.4 Tracking Algorithm

The algorithm of the proposed method is shown in detail
in Algorithm 1. The tracking algorithm was a simple on-
line algorithm. The association algorithm and other han-
dling (add/delete humans) were based on the DeepSORT al-
gorithm [3].

4. Experiments

We conducted experiments on multiple human tracking in
order to verify the effectiveness and efficiency of the pro-
posed method.

4.1 Experimental Conditions

We made two datasets that were created under a variety of
conditions in the rooms we used for our experiments. We
used a Panasonic WV-SF438† fisheye camera as the omni-
directional camera. The image resolution of this camera is
1280 × 960 with a video frame rate of 15 [fps]. The cam-
era parameters were calculated by calibration using OCam-
Calib††. For the LargeRoom dataset, the area of the room
was about 128 [m2] (8 [m] wide × 16 [m] long). For the
SmallRoom dataset, the area of the room was about 36 [m2]
(4 [m] wide × 9 [m] long). The details of the datasets are
shown in Tables 2 and 3.

For the human detector (SSD), we used the de-
fault hyper-parameters. The detector was trained using
220,874 images captured in various rooms including Small-
Room. For the data association parameter, we changed
the two parameters, ε f eat ∈ {200, 300, 400} and εpos ∈
{0.3, 0.5, 0.7, 0.9}. Then ε f eat = 300, εpos = 0.7 were de-
termined using validation data.

The human detector was implemented in MXNet, and
the feature extractor was implemented in PyTorch. We used
a 4.20GHz Intel R© CoreTM i7-7700K CPU, a 32GB RAM,
and a NVIDIA GeForce Titan X Pascal GPU.

For the evaluation metric, we used Multiple Object
Tracking Accuracy (MOTA) metric. MOTA is a widely used
and comprehensive metric that combines three error sources

†https://security.panasonic.com/products/wv-sf438/
††https://sites.google.com/site/scarabotix/ocamcalib-toolbox
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Table 4 Summary of the tracking results (MOTA).

Feature Position 1 [fps] 15 [fps]
LargeRoom SmallRoom SmallRoom2 LargeRoom SmallRoom SmallRoom2

- no rectification - 8.4 51.0 54.5 −3.5 48.7 72.9
SORT [2] - rectangle in image −10.5 24.5 47.0 −1.4 49.9 74.5
DeepSORT [3] no rectification rectangle in image −4.3 30.9 49.2 6.0 52.3 75.3

local rectification - 10.2 51.8 54.3 −3.4 48.5 72.7
Proposed - position in world 8.1 53.1 54.8 −1.1 49.7 74.4

local rectification position in world 11.7 53.3 55.7 6.6 52.0 75.3

as follows:

MOT A = 1 − (FN + IDs + FP)/DET, (3)

where FN, IDs, FP, and DET denote the total number false
negatives, ID switches, false positives, and detections, re-
spectively. The MOTA score ranges from −∞ to 100. More
details about these metrics are described in another pa-
per [34]. For bounding boxes, since the ground truth used
a normal rectangle, the proposed method estimated tracking
results in the normal rectangle n = (x, y, w, h). We made
the ground truths at 1 [fps] because the sequences include a
large number of frames. Therefore, the tracking results were
only evaluated for the annotated frames.

4.2 Evaluation of Multiple Human Tracking

We evaluated each proposed function and their combina-
tions. Also, we verified that the proposed method solves
the existing problems. A summary of the tracking results is
shown in Table 4. The MOTA in the table is an average of
all the sequences. For the feature, “without local rectifica-
tion” or “with local rectification” was used. For the position,
“rectangle in image coordinates” or “position in world co-
ordinates” was used. More details are shown in Appendix
A.

4.2.1 Local Rectification

We evaluated the effects of local rectification. Let us com-
pare (no rectification & -) to (local rectification & -). First,
we present the results for LargeRoom. At 1 [fps], MOTA
improves +1.8 (8.4 vs 10.2). At 15 [fps], MOTA is almost
the same (−3.5 vs −3.4). Next, we present the results for
SmallRoom. At 1 [fps], MOTA improves +0.8 (51.0 vs
51.8). At 15 [fps], MOTA is almost the same (48.7 vs 48.5).
Local rectification is was shown to be effective particularly
at a low frame rate. Local rectification is just as effective
as no rectification at a normal frame rate. At 1 [fps], local
rectification is more effective in the case of LargeRoom than
for SmallRoom. (LargeRoom:+1.8 vs SmallRoom:+0.8)

4.2.2 World Coordinates Representation

We then evaluated the world coordinates representation. Let
us compare (- & rectangle in image) to (- & position in
world). First, we present the results for LargeRoom. At
1 [fps], MOTA improves +18.6 (−10.5 vs 8.1). At 15 [fps],

Fig. 4 MOTA with respect to θ and r.

MOTA is almost the same (−1.4 vs −1.1). Next, we present
the results for SmallRoom. At 1 [fps], MOTA improves
+28.6 (24.5 vs 53.1). At 15 [fps], MOTA is almost the same
(49.9 vs 49.7). The position in world coordinates is particu-
larly effective at a low frame rate. The position in world co-
ordinates is just as effective as the rectangle in image coordi-
nates at a normal frame rate. At 1 [fps], the position in world
coordinates is more accurate in the case of SmallRoom than
for LargeRoom. (LargeRoom:+18.6 vs SmallRoom:+28.6)

4.2.3 Tendency Analysis

We analyzed those cases where the proposed method was
particularly effective. The evaluation metric is MOTA which
is regarded as the normalized ID switch. We used all se-
quences of all frame rates in the LargeRoom dataset. For
analysis, the image coordinates (X,Y) are converted to the
polar coordinates (θ, r). The center point (640, 480) in the
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Fig. 5 Tracking examples. #(number) denotes the frame number. Red circles denote ID switch and
yellow circles denote the prevention of ID switch.

image coordinates is set to point to the origin in the polar
coordinates. θ [rad] is the angle made by the point of ori-
gin, and r [pixel] is the distance from the point of origin.
Figure 4 shows the analysis results. The horizontal axis de-
notes θ and r, and the vertical axis denotes MOTA.
θ: We analyzed those cases where local rectification

was particularly effective. Figure 4 (a) shows a comparison
of MOTA between the cases where the human was verti-
cal/horizontal (−9/8π < θ ≤ −7/8π, −5/8π < θ ≤ −3/8π,
−1/8π < θ ≤ 1/8π, 3/8π < θ ≤ 5/8π) and where the hu-
man was captured at an oblique angle (−7/8π < θ ≤ −5/8π,
−3/8π < θ ≤ −1/8π, 1/8π < θ ≤ 3/8π, 5/8π < θ ≤ 7/8π)).
When the human was vertical/horizontal, MOTA improved
+0.011 (−0.566 vs −0.555). When the human was cap-
tured at an oblique angle, MOTA improved +0.031 (0.205
vs 0.236). Local rectification was more effective in the case
where the human was captured at an oblique angle compared
to the case where the human was vertical/horizontal. This is
owing to background reduction.

r: We analyzed those cases where the world coordi-
nates representation was particularly effective. Figure 4 (b)
shows a comparison of MOTA between the case where the

human was near the origin (0 < r ≤ 200) and where the
human was close to the outside (300 < r ≤ 500). When
the human was near the origin, MOTA improved +17.703
(−17.81 vs −0.107). When the human was close to the out-
side, MOTA improved +1.757 (−2.521 vs −0.764). The
world coordinates representation was more effective in the
case where the human was near the origin than where the
human was close to the outside.

4.2.4 Local Rectification and World Coordinates Repre-
sentation

We evaluated the combination of local rectification and
world coordinates representation at 1 [fps] Let us compare
(local rectification & -) to (- & position in world).

In the case of LargeRoom, local rectification was more
effective than the world coordinates representation (10.2 vs
8.1). This is because local rectification is effective where
the human is located around the outside of the image as de-
scribed in Sect. 4.2.3. When combining local rectification
with world coordinates representation, MOTA improved
1.5. This is because the world coordinates representation
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Table 5 Computational time [msec].

Human detection 102.7
Rotated rectangle estimation 1.0
Human position estimation 0.7
Feature extraction 3.2
Data association 1.1

is effective where the human is located around the center of
the image as described in Sect. 4.2.3.

In the case of SmallRoom, conversely, the world co-
ordinates representation is more effective than local rectifi-
cation (51.8 vs 53.3). This is because the world coordinates
representation is effective in cases where humans are located
around the center of the image as described in Sect. 4.2.3.
However, combining local rectification and the world coor-
dinates representation improved MOTA by only 0.2. The
effectiveness of local rectification is low because the back-
ground area is small when humans are located around the
center of the image.

Therefore, the proposed method (combining local rec-
tification and the world coordinates representation) is effec-
tive, particularly in the case of a low frame rate (1 [fps]) and
a large room (LargeRoom).

4.3 Evaluation of Computational Time

We evaluated the computational time needed for estimating
rotated rectangles and human positions in the world coor-
dinates. Table 5 shows the computational time which is
the average of all frames in sequence 1 in the SmallRoom
dataset. The computational times for rotated rectangles and
human position estimation are 1.0 and 0.7 [msec], respec-
tively. These times are very fast and have little impact on
the overall tracking time. There are 4 humans in Sequence
1; therefore, it takes 0.25 [msec/human] to estimate the ro-
tated rectangle and 0.18 [msec/human] to estimate the hu-
man position. The computational time needed for human
detection accounts for a large percentage in the overall sys-
tem. We can reduce it by employing other fast detectors or
downsizing input images.

4.4 Tracking Examples

Some tracking examples are shown in Fig. 5. “Previous” de-
notes (no rectification & rectangle in image) and “Proposed”
denotes (local rectification & position in world). #(number)
denotes the frame number. Red circles denote ID switch
and yellow circles denote the prevention of ID switch. ID
switches are prevented in “Proposed” in some frames.

4.5 Discussion

We conducted an additional experiment using a more com-
plex sequence in which more humans are moving freely. In
the additional SmallRoom2 dataset, more humans (11) are
moving in longer sequence lengths (169 [sec]), compared
with sequences 3 and 4 in the SmallRoom dataset. The area

of SmallRoom2 is the same as that of SmallRoom. The
tracking results for SmallRoom2 are shown in Table 4. In
addition to other datasets, the proposed method (combining
local rectification and the world coordinates representation)
is effective, particularly in case of a low frame rate (1 [fps]).

5. Conclusion

In this paper, we proposed a novel method that accurately
tracks humans using an association metric for omnidirec-
tional images. The key ideas of the proposed method are as
follows: i) Reducing the background regions by local rec-
tification. ii) Describing the human position in the world
coordinate system. In the experiments, we confirmed that
the proposed method is effective, particularly at a low frame
rate. MOTA improved 3.3 in the LargeRoom dataset and
MOTA improved 2.3 in the SmallRoom dataset. It takes
only 0.43 [msec] per human in a frame to calculate the pro-
posed association metrics. In the future, it will be important
not only reducing background regions and normalize angles
but also to capture human appearance itself. Additionally,
the same idea as the proposed method will be generalized
for standard cameras when perspective effects and lens dis-
tortions are quite noticeable.
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Appendix A: Details of Tracking Results

A summary of the tracking results is shown in Tables A· 1,
A· 2, A· 3 and A· 4. We evaluated ID switches (IDs), Frag-
Mentation (FM), Recall (Rcll), Precision (Prcn), Multiple
Object Tracking Accuracy (MOTA) and Multiple Object
Tracking Precision (MOTP) The numbers of IDs and FM
are the sum of the all sequences, respectively. Rcll, Prcn,
MOTA, and MOTP are the average of all the sequences, re-
spectively.

A.1 LargeRoom Dataset

No rectification vs Local rectification: Let us compare (no
rectification & -) to (local rectification & -). In 1 [fps],
MOTA improves (8.4 vs 10.2). This is because IDs decrease
(1279 vs 1101) while retaining Recall and Precision. Local
rectification is effective, particularly at a low frame rate. At
15 [fps], MOTA is almost the same (−3.5 vs −3.4).

Rectangle in image vs Position in world: Let us com-
pare (- & rectangle in image) to (- & position in world). At
1 [fps], MOTA improves (−10.5 vs 8.1). This is because Re-
call and Precision are improved significantly (Recall: 13.9
vs 41.8, Precision: 42.2 vs 63.5). The position in world is ef-
fective, particularly at a low frame rate. At 15 [fps], MOTA
is almost the same (−1.4 vs −1.1).

Previous method vs Proposed method: Let us compare
(three previous method) to (local rectification & position in
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Table A· 1 Details of tracking results on LargeRoom dataset with 1 [fps].

Feature Position Rcll ↑ Prcn ↑ IDs ↓ FM ↓ MOTA ↑ MOTP ↑
- no rectification - 48.9 63.4 1279 1587 8.4 30.7
SORT [2] - rectangle in image 13.9 42.2 592 638 −10.5 30.9
DeepSORT [3] no rectification rectangle in image 23.1 52.2 669 911 −4.3 30.6

local rectification - 48.9 63.5 1101 1580 10.2 30.7
Proposed - position in world 41.8 63.5 1018 1384 8.1 30.6

local rectification position in world 44.3 64.2 814 1409 11.7 30.6

Table A· 2 Details of tracking results on SmallRoom dataset with 1 [fps].

Feature Position Rcll ↑ Prcn ↑ IDs ↓ FM ↓ MOTA ↑ MOTP ↑
- no rectification - 73.2 80.0 247 432 51.0 22.2
SORT [2] - rectangle in image 46.3 76.2 397 547 24.5 22.2
DeepSORT [3] no rectification rectangle in image 52.5 77.4 352 520 30.9 22.1

local rectification - 73.3 80.1 211 434 51.8 22.2
Proposed - position in world 72.3 81.2 161 424 53.1 22.2

local rectification position in world 72.5 80.8 117 426 53.3 22.2

Table A· 3 Details of tracking results on LargeRoom dataset with 15 [fps].

Feature Position Rcll ↑ Prcn ↑ IDs ↓ FM ↓ MOTA ↑ MOTP ↑
- no rectification - 49.5 63.4 2576 1606 −3.5 30.7
SORT [2] - rectangle in image 47.0 64.7 2422 1607 −1.4 30.6
DeepSORT [3] no rectification rectangle in image 48.4 64.3 1634 1593 6.0 30.6

local rectification - 49.5 63.4 2567 1604 −3.4 30.7
Proposed - position in world 47.6 64.5 2386 1601 −1.1 30.6

local rectification position in world 48.6 64.1 1561 1584 6.6 30.6

Table A· 4 Details of tracking results on SmallRoom dataset with 15 [fps].

Feature Position Rcll ↑ Prcn ↑ IDs ↓ FM ↓ MOTA ↑ MOTP ↑
- no rectification - 74.2 79.7 427 438 48.7 22.2
SORT [2] - rectangle in image 73.4 80.7 347 450 49.9 22.1
DeepSORT [3] no rectification rectangle in image 74.0 80.2 193 441 52.3 22.2

local rectification - 74.2 79.7 435 438 48.5 22.2
Proposed - position in world 73.4 80.6 371 453 49.7 22.1

local rectification position in world 73.9 80.1 206 443 52.0 22.2

world). At 1 [fps], MOTA improves (8.4 vs 11.7). Com-
bining local rectification and position in world is effective,
particularly at a low frame rate. At 15 [fps], MOTA slightly
improves (6.0 vs 6.6).

A.2 SmallRoom Dataset

No rectification vs Local rectification: Let us compare (no
rectification & -) to (local rectification & -). At 1 [fps],
MOTA improves (51.0 vs 51.8). This is because IDs de-
crease (247 vs 211) while retaining Recall and Precision.
Local rectification is effective, particularly at a low frame
rate. At 15 [fps], MOTA is almost the same (48.7 vs 48.5).

Rectangle in image vs Position in world: Let us com-
pare (- & rectangle in image) to (- & position in world). At
1 [fps], MOTA improves (24.5 vs 53.1). This is because Re-
call and Precision are improved significantly (Recall: 46.3
vs 72.3, Precision: 76.2 vs 81.2). The position in world is ef-
fective, particularly at a low frame rate. At 15 [fps], MOTA
is almost the same (49.9 vs 49.7).

Previous method vs Proposed method: Let us compare
(three previous method) to (local rectification & position in

world). At 1 [fps], MOTA improves (51.0 vs 53.3). Com-
bining local rectification and position in world are effective,
particularly at a low frame rate. At 15 [fps], MOTA is almost
the same (52.3 vs 52.0).
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