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SUMMARY Numerous applications such as autonomous driving, satel-
lite imagery sensing, and biomedical imaging use computer vision as an
important tool for perception tasks. For Intelligent Transportation Systems
(ITS), it is required to precisely recognize and locate scenes in sensor data.
Semantic segmentation is one of computer vision methods intended to per-
form such tasks. However, the existing semantic segmentation tasks label
each pixel with a single object’s class. Recognizing object attributes, e.g.,
pedestrian orientation, will be more informative and help for a better scene
understanding. Thus, we propose a method to perform semantic segmenta-
tion with pedestrian attribute recognition simultaneously. We introduce an
attribute-aware loss function that can be applied to an arbitrary base model.
Furthermore, a re-annotation to the existing Cityscapes dataset enriches the
ground-truth labels by annotating the attributes of pedestrian orientation.
We implement the proposed method and compare the experimental results
with others. The attribute-aware semantic segmentation shows the ability
to outperform baseline methods both in the traditional object segmentation
task and the expanded attribute detection task.
key words: semantic segmentation, attribute-aware, pedestrian orienta-
tion, deep neural network

1. Introduction

Computer vision plays an important role in perception tasks
and has been widely utilized for various purposes such as au-
tonomous driving [1], satellite imagery sensing [2], biomed-
ical imaging [3], [4], face recognition [5], and robotics nav-
igation [6]. For Intelligent Vehicle (IV) applications, it is
very important to have a comprehensive understanding of
surrounding scenes captured by in-vehicle cameras. For ex-
ample, weather conditions can be predicted by recognizing
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road and sky [7] for vehicle safety. Ground marking detec-
tion is useful for vehicle localization purposes [8], [9] and it
is also necessary to mark drivable roads for lane instructions
in a smart car [10]. Moreover, recognizing the behavior of
pedestrians is also important to plan the vehicle actions [11].

Obstacle detection is important for an autonomous ve-
hicle to avoid collisions by breaking, lowering or keeping
the speed. However, understanding the situation around the
obstructing objects instead of only focusing on the obstacles
will allow us to handle even more complicated situations.
Semantic segmentation, as one of computer vision tasks,
classifies all desired things in an input image and locates
their areas, ultimately in pixel-level precision. This provides
more decisive information than just detection to help an au-
tonomous vehicle in achieving a better scene understanding;
Semantic segmentation provides more environmental infor-
mation to instruct the vehicle with an immediate breaking
or further to recommend an optimal path for collision avoid-
ance.

Only in a few years, semantic segmentation has at-
tracted many studies in building deep neural network mod-
els. They include Fully Convolutional Network [12], SegNet
[1], Bayesian SegNet [13], PSPNet [14], Mask R-CNN [15],
ICNet [16], and the DeepLab from versions v1 to v3+ [17]–
[19]. Several datasets consisting of input images and the
ground-truth annotations such as CamVid [20], KITTI [21],
and Cityscapes [22] are also publicly available for bench-
marking purpose. The latter is very popular in the semantic
segmentation task for autonomous driving, pushing many
researchers and practitioners in such competition to reach
higher ranks.

However, most of the existing semantic segmentation
methods only learn to recognize object types such as road,
building, car, and person. For autonomous vehicles, addi-
tional information describing an object in details such as its
attributes could help the better understanding of scenes [11].
Figure 1 illustrates the ultimate goal of this newly proposed
task should we apply it to some moving objects. In addition,
breaking down a class into several sub-classes can reduce the
variation of class instances to help the classification process.
Therefore, as our objective, we aim at improving the segmen-
tation accuracy in pixel-level by considering attribute infor-
mation attached to particular objects. This paper exploits
the attribute-aware semantic segmentation, with the simul-
taneous combination of attribute recognition and semantic
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Fig. 1 A general view illustrating the purpose of the newly proposed
attribute-aware semantic segmentation for a better scene understanding.

segmentation. It is implemented as a multi-task learning
paradigm and is expected to be able to enhance environ-
ment perception tasks for ITS purposes. In a preliminary
work [23], this task was designed in three successive stages,
i.e., semantic segmentation, object detection, and attribute
recognition, but our current work proposes an approach to
train the model in an end-to-end process. The concept was
initially introduced in our previous paper [24], while this
paper reveals additional aspects along with a newly extended
dataset and base models.

This paper focuses on pedestrian detection and selects
body orientation as its attribute. Simply detecting the exis-
tence of a pedestrian is necessary for an autonomous vehicle
to take immediate actions before collision. However, we con-
sider that the pedestrian’s body orientation is an important
sign of walking direction to anticipate possible risks from
a distance. The information of body orientation becomes a
clue to the pedestrian movement and hence helps potential
collision avoidance. They are useful for a motion planning
module to plan a vehicle’s future actions. Although pedestri-
ansmight suddenly change their direction ormovement state,
an accurate segmentation system will recognize the changes
in pedestrian attribute and make the decision again. This ex-
plains why simply knowing the existence of a pedestrian is
sometimes inadequate for a smart vehicle. Predicting the op-
timal path is difficult without gaining pedestrian attributes;
Thus, the attribute-aware semantic segmentation task ismore
beneficial to ITS applications.

Here, we also show the re-annotation process on an ex-
isting dataset, documenting our effort to provide the ground-
truth required in this task. Although only pedestrian orien-
tation is added as a new semantic information, it gives hint
and insight to other object attributes when the method is
extended. In summary, our contributions are as follows:

1. We introduce a new concept of attribute-aware seman-
tic segmentation that enables an end-to-end training
process.

2. The proposed attribute-aware loss function is able to
treat both object classes and attribute classes in the same
manner and hence is applicable to all base models.

3. We construct the CityWalks dataset with an attribute

annotation of pedestrian orientations as an extension to
the Cityscapes dataset.

4. We show experimental results proving that the proposed
approach achieves a better performance over the base-
line methods and is capable of providing attribute in-
formation in the segmented results.

The rest of this paper explores related works in Sect. 2,
describes details of the proposed method and its implemen-
tation in Sect. 3, and explains the dataset construction in
Sect. 4. Experimental results and analyses are discussed in
Sect. 5 and Sect. 6 respectively, followed with a conclusion
in Sect. 7.

2. Related Work

In recent years, many studies have been conducted to develop
deep neural network models for the semantic segmentation
task. Liu et al. provides a comprehensive review to summa-
rize the recent progress of semantic segmentation approaches
and datasets [25]. For the attribute-aware semantic segmen-
tation task, which can basically be regarded as a multi-task
learning goal, we have been conducting a study despite some
limitations. A part of work regarding this initial concept has
been published in paper [24].

2.1 Semantic Segmentation Datasets

One of publicly available semantic segmentation datasets,
namely Cityscapes [22], [26], is constructed mainly for au-
tonomous driving research and development purpose. It ad-
equately depicts the complexity of real-world urban scenes
and therefore exceeds previous efforts in terms of dataset
size, annotation richness, and scene diversity. The vehicle-
mounted cameras, while moving, recorded videos of traffic
scenes during the daytime from 50 cities in Germany and
some neighboring countries. The data collection covers sea-
son changes during several months-span including spring,
summer, and fall. The captured road scenes include cloudy
and sunny weathers, but do not include adverse weather con-
ditions such as heavy rain or snow [22]. The first row of
Fig. 6 shows examples of the Cityscapes images. A number
of frames are then extracted from the recorded videos, which
results in 5,000 images with high quality pixel-level annota-
tions and 20,000 additional images with coarse annotations.
The fine-annotated images are divided into 2,975 images for
training and 500 images for validation, while the remain-
ing 1,525 images are for testing that is available to the public
without annotations as they are designated for benchmarking
purpose through the Cityscapes Web site†. Each of the three
split sets is carefully organized to have equal distributions
in some properties such as the city crowd levels and geo-
graphical locations. However, there is no information about
the distribution of the data for each weather condition. The
dataset challenges researchers to classify 19 different classes
in the pixel-level semantic labeling task.
†https://www.cityscapes-dataset.com/benchmarks/
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2.2 Semantic Segmentation Models

A Fully Convolutional Network (FCN) was introduced by
Long et al. as a model of semantic segmentation trained in
an end-to-end process [12]. FCN extends the existing mod-
els containing fully-connected layers for classification to the
semantic segmentation task. This model takes an arbitrary
size of input image and produces a pixel-wise segmentation
map. To reduce the computational cost, Badrinarayanan et al.
presented SegNet [1] with two deep convolutional streams,
namely encoder and decoder. It adapts the VGG16 network
[27] without employing fully-connected layers. Each en-
coder layer in the model has a corresponding decoder layer
and is ended with a final pixel-wise classification layer. It
was then enhanced by Kendall et al. as Bayesian SegNet [13]
to obtain better performance by considering a probabilistic
element.

The Pyramid Scene Parsing network (PSPNet) architec-
ture by Zhao et al. [14] uses ResNet [28] as its backbone, fol-
lowed by a pyramidmodule pooling. It extracts features from
four different scales, and then merge them after up-sampling
each feature to the same resolution. This pipeline effec-
tively produces combined multi-scale feature maps without
performing multiple convolutions. It showed its remark-
able performance on PASCAL VOC [29] and Cityscapes
datasets [22]. Meanwhile, the Mask R-CNN by He et al.
[15] arose with a new conceptual framework. It performs
objects detection in parallel with segmentation mask cre-
ation for each object instance. It modifies the Faster R-
CNN [30] model by adding a segmentation branch to work
together with the existing bounding-box detection branch.
Very recently, DeepLab-v3+ [19] was developed by Chen
et al. from the previous DeepLab-v3 [18] version by em-
ploying an encoder-decoder structure. The encoder module
utilizes multi-scale atrous convolution to encode contextual
information at multiple scales, while the decoder effectively
improves the segmentation results.

2.3 Multi-Task Learning

Multi-Task Learning (MTL) is a machine learning paradigm
that leverages useful information by solving multiple related
tasks simultaneously. Zhang and Yang made an extensive
survey [31] on numerous MTL algorithms, classified them
into some categories, and summarized the results including
applications in the area of computer vision. Meanwhile,
Ruder described that for the deep learning context, MTL
would typically be performed with either two concepts: hard
or soft parameter sharing [32].

Mask R-CNN [15] is one of deep learning models that
applies the MTL paradigm by adding the functionality of in-
stance segmentation. The idea is simple but powerful enough
to place top ranks in three challenges including instance seg-
mentation, object detection, and person key-point detection.
Recently, the MTL paradigm is widely implemented for var-
ious purposes. An MTL-based CNN was presented by Lu et

Fig. 2 Our general approach of multi-task learning for attribute-aware
semantic segmentation; Unlike other existing works, an attribute-aware loss
function is proposed to deal with the attributes (either exists or not), and
applicable to any arbitrary base model.

al. [33] to address food segmentation, recognition, and vol-
ume estimation, which successfully outperforms the baseline
methods. Another MTL architecture with heavy sharing of
weights and features was introduced in [34] to perform four
tasks: 2D pose estimation, 3D pose estimation, 2D action
recognition, and 3D action recognition.

In some references related to MTL, each task is treated
in a different manner and solved by modifying the classifier
model. Commonly, the loss function can handle multi-task
conditions of the input image, yet is not considered for non-
multi-task conditions simultaneously. The concept proposed
in this paper will overcome this limitation. Concretely, we
design a loss function that is general as in Fig. 2 to be applied
to all input images through the same calculation flowwithout
any change of network architecture.

3. Attribute-Aware Semantic Segmentation

We propose a new task named “attribute-aware semantic
segmentation” to yield a richer output than a conventional
pixel-wise labeling task, which can be implemented as an
MTL framework. Through this task, in addition to recog-
nizing the object class of each pixel, we can also obtain the
attribute information associated with the object. Addition-
ally, this newly proposed task is also aimed at improving
the segmentation performance. Typically, the instances of a
particular class, for example, person, have a high variance
in shape and appearance. This makes an algorithm difficult
to classify heterogeneous instances into a correct class. Our
idea is to divide such a class into several sub-classes accord-
ing to its attribute values. This will reduce the diversity in
each sub-class and thereby simplify the classification task.

Instead of reconstructing the model architecture, the
proposed approach basically deals with the training process.
Since the original class, i.e. person, might be necessary if the
attribute value looks unknown, we simply add the sub-class
set corresponding to the attribute values at the same level of
object classes in the base model’s output layer, yet maintain
each attribute as a still-derived class using a loss function.
Thus, any base semantic segmentation model can be made
use of in the proposed method.
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3.1 Designing an Attribute-Aware Loss Function

In the semantic segmentation task, a pixel-wise cross-
entropy loss has been the most commonly used loss function
so far. The final layer of a segmentation model produces out-
put tensor channels as many as the number of object classes.
Each output channel representing a class contains the prob-
abilities of all pixels to be classified into that class. The loss
function (L) examines every pixel individually according to
its class predictions (ρk) by comparing a depth-wise pixel
vector to the encoded target vector (yk) as follows.

L =
1
N

N∑
i

`i (1)

`i = −

|C |∑
k

yk log(ρk ) (2)

The log loss for the i-th pixel is calculated on the k-th class
and then summed over all possible classes (C). This scoring
is repeated over all N pixels and averaged to obtain the
overall image loss. To improve the object segmentation
result, attribute information is considered to be important.
By dividing a particular class into sub-classes according to
its distinct attribute values, a more appropriate pixel-wise
labeling can be obtained. Therefore, we need to consider
attribute loss in addition to object class loss when evaluating
the prediction of pixels containing attribute information.

`i =



`oi + `
a
i if the i-th pixel has an attribute

`oi otherwise
(3)

For example, suppose that three objects form the target
classes C = {X,Y, Z }, and class X has two attribute classes
AX = {X1, X2}. Pixel area or instances labeled as the at-
tributed object X will be valued additionally to either of
those attributes, X1 or X2. However, in some conditions due
to visual limitation, we cannot always assign every instance
of an attributed class with an attribute value. To allow this,
there will be some pixels annotated as class X but with an un-
known attribute. Label X remains as a target class and the set
of targets is obtained by combiningC and AX (or just A) to be
C ∪ A = {X,Y, Z, X1, X2}. This clarifies Eq. (3) that `oi and
`ai are distinguished based on which the class set is used such
that `oi = −Σ

|C |
k

yk log(ρo
k
) and `ai = −Σ

|C∪A |
k

yk log(ρa
k

).
With the general class setting described above, we can

calculate two independent losses: Lo penalizes every pixel
across all object classes and La does so to all combined
object and attribute classes. These loss functions allow us
to evaluate object and attribute classes simultaneously while
maintaining the dependency of attributes to an object. To
solve the problem in one calculation flow, we combine the
two losses via key parameters of weights, namely β̂o and β̂a,
to construct the attribute-aware loss function:

L =
β̂o

β̂o + β̂a
Lo +

β̂a

β̂o + β̂a
La, (4)

where the values for β̂o and β̂a can be arbitrarily assigned
any real number to represent the amount of contributions
from Lo and La toward the final loss calculation. We then
simplify β̂o

β̂o+β̂a
and β̂a

β̂o+β̂a
with βo and βa, respectively, to

equally re-form the formula as follows:

L = βoLo + βaLa . (5)

According to Eq. (4), βo and βa in Eq. (5) should satisfy the
condition of βo + βa = 1. Since L is proportional to ` as
defined in Eq. (1), the loss for each pixel is

`i = βo`
o
i + βa`

a
i . (6)

By replacing yk log(ρk ) in Eq. (2) with Ek for simplification,
we then break down Eq. (6) with object and attribute classes
mentioned in the above case as follows:

`i = βoΣ
|C |
k
Eok + βaΣ

|C∪A |
k

Ea
k ,

= βo (EoX + E
o
Y + E

o
Z ) +

βa (Ea
X + E

a
Y + E

a
Z + E

a
X1
+ Ea

X2
).

The proposed framework puts object and attribute classes
together in the output layer so it is easy to calculate La.
Meanwhile, to calculate Lo, the likelihood ρok for each object
class can be copied from ρa

k
, since X , Y , and Z in the

calculation for La are designated to the same classes in the
calculation for Lo. This makes ρoX = ρaX that implies EoX =
Ea
X , and the same also applies to EoY and EoZ to continue and

simplify the derivation as

`i = βo (Ea
X + E

a
Y + E

a
Z ) +

βa (Ea
X + E

a
Y + E

a
Z + E

a
X1
+ Ea

X2
),

= βoE
a
X + βoE

a
Y + βoE

a
Z +

βaE
a
X + βaE

a
Y + βaE

a
Z + βaE

a
X1
+ βaE

a
X2
,

= (βo + βa)Ea
X + (βo + βa)Ea

Y + (βo + βa)Ea
Z +

βaE
a
X1
+ βaE

a
X2
,

`i = E
a
X + E

a
Y + E

a
Z + βaE

a
X1
+ βaE

a
X2
,

=

|C |∑
k

Ea
k + βa

|A |∑
k

Ea
k . (7)

The formula derivation along with the aforementioned
scheme and class setting ensures that the proposed loss func-
tionwith two entire-image losses in Eq. (4)will penalize each
pixel with object and attribute losses as defined in Eq. (6).
Hence, it should be able to treat both attributed and non-
attributed objects simultaneously in one calculation flow.

Figure 3 illustrates the proposed loss function and com-
pares it to the basic semantic segmentation, while the re-
maining part of this section will explain the implementation
especially in the study discussed in this paper.

3.2 Implementation of the Semantic Segmentation

The difference between baseline methods and the proposed
method lies inside the loss calculation process in the train-
ing phase, while other processes remain basically the same.
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Fig. 3 Illustration of the proposed method in Sect. 3, and comparison of conventional semantic seg-
mentation and the proposed attribute-aware semantic segmentation via a simple case, where objects and
attributes areC = {X,Y, Z } and AX = {X1, X2 }, respectively.

Fig. 4 Block diagram of the proposed loss calculation in the semantic
segmentation network; pixels with class “person” are annotated as 11, while
ignored pixels are annotated as 255.

Figure 4 depicts the block diagram explaining the modifica-
tion applied to the standard loss function. In the Cityscapes
challenge, images are annotated with 19 object classes. We
add four attribute values correspondingly to pedestrian body
orientations (back, right, front, and left), resulting in the
ground-truth labels re-annotated in 23 classes. Before count-
ing Lo and La separately, we convert the ground-truth maps
and output channels from 23-class to 19-class mode. In
the ground-truth conversion, the proposed algorithm maps
all four orientation labels to one-person label, while in the
outputs conversion, it selects channels corresponding to 19
object classes and omits any attribute channel.

Algorithm 1 shows this process. We can see that the
input parameters (i.e. output channels and target map) be-
tween the standard and the proposed loss functions are the
same. Therefore, in terms of algorithm complexity, the pro-
posed method is not very different compared to the standard
one. The actual codes for training and testing were based on
Deng’s implementation [35] obtained from a GitHub repos-
itory†, of which some modules were modified to implement
the proposed algorithm properly.

†https://github.com/zijundeng/pytorch-semantic-segmentation/

Algorithm 1: The attribute-aware loss function
Function GtMapping(gt):

gt[(gt=attribute_id)]← person_id
return gt

Function ChannelSelection(out):
num← num_all_class − num_attribute
out ← out[0:num]
return out

Function StandardLoss(gt , out):
return CrossEntropyLoss(gt, out)

Function AttributeAwareLoss(gt, out , β̂o , β̂a):
gto ← GtMapping(gt)
outo ← ChannelsSelection(out)
Lo ← StandardLoss(gto , outo )
La ← StandardLoss(gt, out)
return (β̂o / (β̂o + β̂a )) Lo + (β̂a / (β̂o + β̂a )) La

4. Construction of the CityWalks Dataset

There are numerous datasets publicly available for the se-
mantic segmentation challenge, but none of them includes
attribute information together with the object class in the
given labels. Therefore, for the proposed attribute-aware
semantic segmentation task, a modification on top of an ex-
isting dataset is required. Here, we use theCityscapes dataset
as the base and re-annotate the labels as needed by dividing
a certain object into a number of attribute labels.

4.1 Pedestrian Orientation as Attributes

As mentioned in Sect. 1, we choose the class person as a
target because a driver must pay attention to moving objects,
especially a pedestrian, while driving. Since the walking
direction is also important for the driver to determine his/her
actions, body orientation is designated as an attribute to en-
rich the class of person. We introduced the initial concept of
our work in [24], but it was not effective enough to achieve
good accuracy in classifying the orientations. In this paper,
we consider four orientation classes as considered in devel-
oping an autonomous vehicle [36], including back (0◦), right
(90◦), front (180◦), and left (270◦). Information regarding
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Fig. 5 Guidance for four orientations annotation.

Table 1 Statistics of the CityWalks dataset.
Training set Validation set

#image 2,975 500
#image with person 2,345 402
#image with 4 orientation attributes 2,083 371
%image with person in the dataset 78.82 % 80.40 %
%image with attributes in the dataset 70.02 % 74.20 %
%person pixels in the dataset 1.08 % 1.15 %
%attribute pixels in the dataset 1.03 % 1.09 %

these directions of a pedestrian is meaningful and especially
important for ITS purposes, because it can provide informa-
tion on whether a pedestrian is intending to walk across the
street, is aware of the vehicle, or walks on a sidewalk along
the street, and so on. We use the guidance as shown in Fig. 5
to re-annotate person instances in the Cityscapes dataset.

4.2 Extending Dataset Annotation to the CityWalks
Dataset

Unlike the preliminary work [23] that utilizes the CityPer-
sons [37] bounding box, we completely re-annotate the
Cityscapes dataset’s ground-truth labels manually. We
achieved this re-annotation in a much better quality by com-
pleting missing pedestrians as well as small body parts such
as toe, hand, and head. In addition, through this, the number
of pixels annotatedwith attribute values drastically increased
for training and evaluation purposes.

We performed the re-annotation using a conventional
image editor. It took around 1.5 minutes per image for ‘easy’
or ‘moderate’ cases including those that covered quite a few
persons in one image. However, for ‘difficult’ images which
contains a crowd of pedestrians with various orientations, it
took approximately ten minutes per image.

Statistics on this new annotation is summarized in
Table 1, while some visual results before-and-after re-
annotation are shown in Fig. 6. The annotated colors cor-
responding to all classes are visualized in Fig. 7. We name
the dataset CityWalks, a modified Cityscapes dataset with
additional labels corresponding to pedestrian orientations,
and will make it available to the public.

In addition to new annotations, this process also pro-
vides some corrections to the original ground-truth labels
given in the Cityscapes dataset. The mistakes we found in-
clude several labels swapped between objects, missed or ig-
nored pedestrians, and inconsistent labels for items attached
to a pedestrian such as umbrella, bag, etc. Figure 8 shows
some samples of incorrect ground-truth labels found in the
Cityscapes dataset.

Fig. 6 Comparing ground-truth annotations of scenes in the original
Cityscapes and the extended CityWalks datasets.

Fig. 7 Color annotations for Cityscapes and CityWalks datasets.

Fig. 8 Samples of incorrect annotations in the originalCityscapes dataset.

5. Experimental Results

5.1 Methods Comparison

We evaluated the following methods in our experiments:

(1) FCN8s [12] and PSPNet [14] are the baseline methods
with the same base semantic segmentation models built
in [12] and [14]. We re-train each of them using the
standard loss function and the Cityscapes dataset to
output 19 object classes.

(2) FCN8s.23cls and PSPNet.23cls are same as the base-
line methods (1) but trained with CityWalks dataset to
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Fig. 9 Baseline (PSPNet), proposed, and comparative methods.

output 23 classes.
(3) PSPNet.comp is a comparative method representing

the MTL-based architecture; It modifies PSPNet.23cls
by splitting convolution layers to separately output be-
tween object and attribute segmentation tasks. With
the same training set as used in (2), each object and at-
tribute branch uses the standard loss function to output
(19+4) classes.

(4) FCN8s.prop andPSPNet.prop are our proposedmeth-
ods which utilize the same models as in (2), but apply
the proposed attribute-aware loss function during the
training process. The training set and the number of
output classes are the same as (2). The default values
for β̂o and β̂a in FCN8s.prop are 0.7 and 0.3, respec-
tively, while for PSPNet.prop, they are equally set as
0.5.

Figure 9 depicts the four methods used in our experi-
ments with PSPNet as the base model. In the training stage,
we used a batch size of 4 and the maximum iteration of
50,000 or equivalent with 66 epochs. All images and cor-
responding ground-truth labels were resized from 2,048 ×
1,024 pixels to 1,024 × 512 pixels. We set 512 × 512 pixels
as the window cropping size.

5.2 Segmentation Performance

The segmentation performance of eachmethod for local eval-
uation is calculated based on metrics including global Ac-
curacy (gAcc), per-class Accuracy (cAcc), Intersection over
Union (IoU), and mean IoU (mIoU). Moreover, we consider
IoU for the person class (IoUp) to particularly see how the
attribute of pedestrian orientation affects the segmentation
model in classifying the object class from which those at-
tributes are derived. Detailed definitions on these metrics
are provided in our previous paper [24]. In short, gAcc is
obtained by the number of correctly-predicted pixels across
all classes compared to the number of all pixels, and cAcc is
similar to gAcc but calculated for each class, then averaged
for all classes. Meanwhile, IoU of each class is the number
of true positives divided by the sum of true positives, false
positives, and false negatives.

The performances are measured in two ways: object
segmentation that consists of 19 classes corresponding to
all objects, and attribute segmentation that only focuses on
four orientation classes. The output of themodel trainedwith
the Cityscapes dataset contains 19 labels and thus we only
assess it with the object segmentation performance. Mean-
while, for all models trained with the CityWalks dataset, we
can measure them with both object and attribute segmen-
tation performances. Their segmentation outputs, however,
contain 23 labels including all objects and attributes. There-
fore, to calculate the object segmentation performance, we
need to convert the output and ground-truth labels from 23-
class mode to 19-class mode by substituting all attribute
labels (19∼22) with the person label (11). For attribute seg-
mentation performance, we convert the labels into four-class
mode by ignoring all object labels (0∼18) before calculating
each IoU. Especially for PSPNet.comp, the four attribute la-
bels are not merged into the person label since object and
attribute classes are already divided into two output maps.

5.3 Comparison of Validation Performances

We train each model using the training set containing 2,975
images and calculate the performance using 500 images in
the validation set. Table 2 shows the performance compar-
ison between object segmentation models. Performances
in terms of attribute segmentation are compared in Table 3
where all models are trained with the CityWalks dataset.
Note that we are not focusing between different base models
here since it is already proven in the previous study [14] that
PSPNet works much better than FCN8s in the pixel-wise la-
beling task. Therefore, we compare the performances locally
for each base model.

As we can see in Table 2, FCN8s.prop only loses versus
FCN8s in terms of IoUp. Probably, this is due to the lim-
itation of the FCN8s itself which is unstable in classifying
a certain object. In more general measurements, i.e. gAcc,
cAcc, andmIoU, the proposed FCN8s is better than the base-
line. However, with PSPNet baseline, the proposed method
outperforms both the baseline and the comparative methods
in all metrics. Moreover, Table 4 shows the performance for
each object class. In the table, the proposed method shows
its ability to yield better IoU in more objects than the base-
lines. Therefore, we can infer that the best result for each
base model is obtained from the proposed method.

In terms of attribute segmentation shown in Table 3,
the proposed loss function applied to both base models gen-
erally works better than those using the standard function.
For instance, for the FCN8s base model, FCN8s.prop is bet-
ter than FCN8s.23cls in overall score despite the loss in a
particular IoU, i.e. IoU20. Meanwhile, for the PSPNet base
model, PSPNet.prop is defeated by PSPNet.comp according
to the average of all orientations’ IoU. Nevertheless, if we
take a detailed look at each IoU, the performances between
those two methods can be said to be competitive between
each other. For example, in IoU19 and IoU21, the proposed
method loses, but on the other hand, in IoU20 and IoU22, it
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Table 2 Comparing performances on the object segmentation.

Method Loss Training gAcc cAcc mIoU IoUpfunction data
FCN8s [12] standard Cityscapes 88.44 57.12 46.33 48.01
FCN8s.23cls standard CityWalks 88.72 57.05 47.08 44.80
FCN8s.prop proposed CityWalks 88.84 57.73 47.64 47.45
PSPNet [14] standard Cityscapes 94.94 78.02 70.25 74.08
PSPNet.23cls standard CityWalks 94.86 79.48 70.85 71.69
PSPNet.comp standard CityWalks 92.54 71.45 59.02 63.72
PSPNet.prop proposed CityWalks 94.98 79.90 72.15 74.35

Table 3 Comparing performances on the attribute segmentation;
IoU19, IoU20, IoU21, and IoU22 are the IoU scores for orientations
back, right, front, and left, respectively.

Method Average IoU19 IoU20 IoU21 IoU22
FCN8s.23cls 19.53 27.64 6.98 18.78 24.70
FCN8s.prop 21.34 28.52 5.58 25.51 25.75
PSPNet.23cls 38.52 54.63 23.26 49.56 26.63
PSPNet.comp 42.02 59.12 24.98 57.74 26.24
PSPNet.prop 41.17 56.83 26.85 50.54 30.48

Table 4 Performances of semantic segmentation on the validation set for all object classes measured
in each class’s IoU and the Mean IoU.
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FCN8s [12] 46.33 93.56 60.57 80.45 27.31 33.28 12.26 16.93 28.89 81.42 40.53 75.47 48.01 28.23 80.70 32.11 41.95 34.51 17.03 47.10
FCN8s.23cls 47.08 93.57 60.67 80.94 29.10 34.30 12.43 18.93 29.10 81.80 41.91 76.89 44.80 27.86 80.29 33.30 39.04 44.09 18.28 47.12
FCN8s.prop 47.64 93.59 60.34 81.20 28.80 34.42 12.63 19.07 29.26 81.81 42.44 77.60 47.45 27.93 80.57 36.69 39.90 42.08 22.02 47.36
PSPNet [14] 70.25 97.59 80.89 90.50 49.25 50.22 51.24 59.83 71.02 90.89 60.85 93.82 74.08 53.18 93.15 67.01 79.55 46.25 55.26 70.14
PSPNet.23cls 70.85 97.41 79.99 90.37 48.52 50.06 51.98 59.86 70.45 91.01 63.29 93.74 71.69 53.89 93.07 67.54 81.46 58.58 53.35 69.89
PSPNet.comp 59.02 95.93 71.27 87.10 31.03 37.57 38.65 41.80 53.35 88.19 53.94 91.25 63.72 38.30 88.66 48.59 63.03 44.09 25.22 59.73
PSPNet.prop 72.15 97.50 80.34 90.67 52.98 52.23 50.58 58.86 70.10 90.83 62.63 93.47 74.35 54.53 93.18 71.08 83.73 69.67 54.29 69.91

Table 5 Comparing performances of FCN8s and PSPNet models using
the proposed attribute-aware loss function with various β̂o and β̂a values.

β̂o , β̂a
FCN8s PSPNet

gAcc mIoU IoUp gAcc mIoU IoUp
0.0, 1.0 88.72 47.08 44.80 94.86 70.85 71.69
0.1, 0.9 88.63 47.16 46.57 94.91 70.60 73.69
0.2, 0.8 88.77 46.91 46.70 94.91 70.84 73.45
0.3, 0.7 88.72 46.79 47.02 94.92 70.61 73.87
0.4, 0.6 88.73 47.00 47.52 94.84 70.10 73.65
0.5, 0.5 88.64 47.08 47.11 94.98 72.15 74.35
0.6, 0.4 88.69 46.85 47.36 94.93 69.51 74.32
0.7, 0.3 88.84 47.64 47.45 94.95 71.00 74.26
0.8, 0.2 88.64 46.56 47.51 94.94 71.21 74.34
0.9, 0.1 88.40 46.71 47.41 94.97 71.21 73.89
1.0, 0.0 88.44 46.33 48.01 94.94 70.25 74.08

is the best among all methods.

5.4 Performances with Various β̂o and β̂a

The weights β̂o and β̂a are the key parameters of the pro-
posed attribute-aware loss function. Therefore, we trained
the PSPNet and FCN8smodels using the proposed loss func-
tion with various combinations of β̂o and β̂a. Each weight
value ranges from 0.0 to 1.0. In this case, assigning β̂o and
β̂a with 0.0 and 1.0, respectively, means that the base model
is trainedwith 23 classes but using the standard loss function,
which corresponds to our previous work [24]. On the other
way, assigning those weights with 1.0 and 0.0, respectively,
is equivalent to the base model trained with 19 classes using
the standard loss function, since the loss only considers the
object loss in the learning process.

Table 5 shows the results of this experiment, comparing
object segmentation performances based on gAcc, mIoU,
and IoUp. Numbers in bold indicate the best three in each
column. For the FCN8s model, we can see that the pattern
is not so clear on which pair of β̂o and β̂a results in the best

performance among all settings. However, for the PSPNet
model, we can see better and best performances commonly
yield from β̂o larger or equal to β̂a. Compared to the first
and last rows, which do not handle both object and attribute
classes simultaneously, the proposed method with various
β̂o and β̂a has better results in general.

6. Discussion

According to Table 2, we can see that for both base models,
the proposed method that uses the attribute-aware loss func-
tion outperforms other methods in the object segmentation
task. This is also reinforced by what is shown in Table 4
where the proposed methods for both base models dominate
the higher scores over all objects classes. The experimen-
tal results also show that the comparative method performs
well particularly in the attribute segmentation task but loses
much in the object segmentation task. This winning case is
reasonable since the comparative method splits the attribute
segmentation task away from the object segmentation. The
classification task to learn by the comparative method’s at-
tribute branch has only four classes, which is much easier
than the proposed method has. Nevertheless, looking at
the results in Table 3, the proposed method is still able to
compete with it. On the other hand, the performance of
PSPNet.comp in classifying 19 object classes is worse than
the other methods; It might require more epochs to fit the
weights during training process due to additional trainable
parameters introduced by the attribute branch. Thus, we
can infer that by adding attributes to enrich the information
of a particular type of object and treating it with a suitable
loss function provided by our proposed method, the seg-
mentation performance improves. This not only provides
more information in the segmentation using pedestrian ori-
entation, but also increases the ability to perform pixel-wise
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classification, and furthermore, improves the global segmen-
tation accuracy. The proposed method can also be applied to
other base models not included in this experiment to see the
improvement of segmentation performance. For more ITS
applications, this technique can be extended to the training
with other datasets enriched with more variability in envi-
ronment and weather in order to better understand various
conditions of traffic scenes.

Based on the experimental results, we consider that the
gAcc of around 85∼90% is sufficient to detect and locate
some objects, but insufficient for the pixel-wise segmenta-
tion task. This means that with level of gAcc, we can use
it to predict whether pedestrians exist or not, but still inad-
equate to help plan future actions. Therefore, we expect a
higher accuracy of about 95% for a better environmental un-
derstanding. With a higher pixel-level accuracy, it will allow
us to precisely locate the objects including their surrounding
areas and will be helpful in predicting vehicle’s future path to
avoid collision. Thus, a more accurate segmentation result is
needed for complex ITS applications. Additionally, we con-
sider that accuracy improvement in semantic segmentation
is necessary to better classify two or more similar objects
but destined to have different labels. To see the improved
results, wemay refer to Fig. 10 showing that person and rider
are actually the same object but classified into two different
classes. In this case, a more accurate segmentation helps the
autonomous driving system to distinguish those two classes
and make a correct decision. Any small improvement is
also important to make clearer boundaries between person
and surrounding pixels that can help predict an alternative
path to avoid obstacles or other further actions. Besides, for
the attribute-aware semantic segmentation task, the pixel-
level accuracy is important to avoid multiple attribute values
labeled on the same object instance.

6.1 Qualitative Result

Figure 10 shows some results that indicate how the proposed
method enhances the segmentation outputs. Some parts of
person pixels are often misclassified as rider since they are
quite similar. In input (1) and (2), the proposed method
performs better while the baseline method labels incorrectly
in some parts of the person pushing a cart. Sometimes,
the baseline method is also confused to label a rider who
stands and looks like a person as seen in input (3), while the
proposed method can handle it correctly. In another case,
the segmentation might fail to form a complete person. For
example, at the leg part of input (4), the proposed method
can form complete legs better than the baseline method.
This figure demonstrates that the proposedmethod is capable
of improving the segmentation accuracy by considering the
pedestrian’s attribute.

In terms of objects combined with attributes segmen-
tation, let us inspect Fig. 11 to see sample results of the
proposed method. A pedestrian group with the same ori-
entation is shown in column (1), while a pedestrian with a
different orientation from a group is shown in column (2).

Fig. 10 Qualitative results in the object segmentation task, comparing
the baseline (PSPNet [14]) and the proposed methods (PSPNet.prop); the
difference is seen inside the yellow-dashed box.

Columns (3) and (4) represent cases of crossing pedestrians.
The proposed method shows its capability to correctly dis-
tinguish pedestrians with body orientation attributes left or
right. Column (5) also shows the superiority of the proposed
method in segmenting a crowd of people with various orien-
tation attributes. Overall, these figures verify that the results
yielded by the proposed method are in good quality thanks
to the multi-tasking segmentation by combining object and
attribute recognitions.

6.2 Computational Cost

We point out the load of computation to execute the training
process with several settings according to GPU usage and the
number of epochs completed per day. We used the NVIDIA
GeForce GTX 1080 Ti GPU to train each model. Table 6
shows the summary results of computational costs recorded
during each training. The first three rows indicate the costs
to run the baseline, comparative, and the proposed methods,
respectively. We can see that there is no significant difference
among the three methods as long as the image and window
cropping sizes are the same. For the comparative method,
although it splits the layers, the cost of computation is not
affected much since the additional branch is placed in the
final layer. We can infer that the proposed method using
the attribute-aware loss function is capable of performing an
MTL-based task but takes no risk on the computational cost.
This is in accordance with the explanation in Sect. 3.

The computational cost in the training process is, how-
ever, mostly influenced by the image size and the window
cropping size. In the fourth row of Table 6, when the image
size is doubled, the training speed is much slower, but the
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Fig. 11 Some results of the proposed method (PSPNet.prop) in the attribute-aware semantic segmen-
tation task, from (1) easy (uniform) to (5) complex (heterogeneous) cases.

Table 6 Computational costs of PSPNet training with several settings.
Method Image size Crop size GPU usage Train speed

PSPNet [14] 1,024 × 512 512 × 512 ∼10 GB ∼33 epochs/day
PSPNet.comp 1,024 × 512 512 × 512 ∼10 GB ∼33 epochs/day
PSPNet.prop 1,024 × 512 512 × 512 ∼10 GB ∼33 epochs/day
PSPNet.prop 2,048 × 1,024 512 × 512 ∼11 GB ∼7.2 epochs/day
PSPNet.prop 2,048 × 1,024 713 × 713 ∼20 GB ∼8.4 epochs/day
PSPNet.prop 2,048 × 1,024 916 × 916 ∼30 GB ∼6.7 epochs/day

GPU usage only increases slightly as the cropping size is still
the same. Meanwhile, the cropping size has more influence
on the GPU size. As the cropping size increases, the space
required on the GPU increases sharply. It also affects on the
training speed, but not too significant when the image size
remains the same.

For real ITS applications, here we also consider the
processing speed on the testing data. Since the proposed
method practically just modifies the training process, the
computational cost of testing will not be influenced by the
attribute-aware loss function. For the proposed methods
using FCN8s and PSPNet base models, they gave around
5.00 and 2.57 frames per second (fps), respectively. These
costs were calculated for images sized 1,024 × 512 pixels in
the NVIDIA’s GPU as previously mentioned. That FCN8s
runs faster than PSPNet is presumably noticed since the
PSPNet model by [14] is much complex as compared to the
FCN8s by [12]. The processing speed here is apparently very
slow if we compare it to a video that commonly moves with
20∼30 fps, and hence insufficient for common vehicle based
vision in real-time. Since a real self-driving car requires high
accuracy, as well as fast processing on a limited hardware,
it is recommended to implement the semantic segmentation
models on FPGA, which is extensively used in embedded
applications. The FPGA implementation that is faster and
more efficient but still maintains its performance [38] can be
a solution to the problem of the real-time processing speed.

7. Conclusion

We introduced a new concept of attribute-aware semantic
segmentation to enrich the scene understanding as well as an
approach which allows a deep neural network model trained
in an end-to-end process. Our main contribution is the pro-
posal of an attribute-aware loss function capable of handling
segmentation loss for both object and attribute classes in one
calculation flow which can be applied to an arbitrary base
model. We also enriched themost popular pixel-wise labeled
dataset Cityscapes by adding body orientations of pedestrian
as an attribute to the person class to extend the ground-truth
labels, which is named the CityWalks dataset and will be
publicly available on the Web. Experiments with various
settings were conducted and the results showed that the pro-
posed method successfully outperforms the baseline meth-
ods covered in this study. It shows that the proposed method
is able to work well in recognizing pedestrian attributes and
improving the performance of semantic segmentation for ob-
ject classes as challenged in various competitions. A further
extension in terms of attribute types will be our future plan
as well as applying the method to other moving objects.
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