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Abstract

Recently, helper robots become popular in our social life,

especially for helping the elderly and the disabled people to

perform their daily tasks at home. To handling objects, ob-

ject pose estimation from a depth image is an essential task

of the helper robots. However, an object’s pose is often am-

biguous from an observation from only a single viewpoint.

If we can observe the object from additional viewpoints, the

pose estimation result will be better. Thus, we propose a

next viewpoint recommendation method based on pose am-

biguity minimization. We confirmed and showed the pro-

posed method outperformed other comparative methods on

synthetic object images.

1. Introduction

Object pose estimation has recently become one of the

focussed topics in the machine vision field for application on

tasks such as object picking by a robot. Primarily, object

picking is an essential task for home helper robots and indus-

trial robots. For observing the surroundings of a robot, it is

usually equipped with several sensors such as RGB cameras

and Depth cameras. In this paper, we focus on depth images

captured by a depth camera and utilize them for estimating

an object’s pose.

Among techniques for pose estimation from depth images,

the simplest approach is estimating an object’s pose from a

single depth image captured from a certain viewpoint. If an

object has a distinct shape to be distinguished from vari-

ous viewpoints, the object’s pose estimation would be easy.

However, most objects have good and bad viewpoints for

their pose estimation. We define “pose ambiguity” as how

difficult to estimate the object’s pose is. High pose ambigu-

ity leads to inaccurate pose estimation.

To the extent of our knowledge, the techniques for object

pose estimation are divided into two; estimating an object’s
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Fig. 1 Recommendation of the best next viewpoint.

pose from a single image known as the single viewpoint pose

estimation, and from images captured from multiple view-

points known as the multiple viewpoints pose estimation.

Chin et al. [1] proposed a template matching method for

the single viewpoint pose estimation. To reduce the number

of templates, Murase and Nayer [2] proposed the Paramet-

ric Eigenspace method. However, in their work, images with

similar appearances may be embedded to similar points in

a low-dimensional subspace, which makes it difficult to dis-

tinguish a pose accurately. Recently, Ninomiya et al. [3]

proposed a supervised feature extraction method for em-

bedding images into a deep feature manifold. They modified

DCNNs [4] for object pose estimation, named Pose-CyclicR-

Net, which can accurately handle an object’s rotation by

describing the rotation angle using trigonometric functions.

In general, object pose estimation from a single viewpoint

faces the problem of inaccurate pose estimation due to the

pose ambiguity issue; namely, an object may have some

poses which look similar and hard to be distinguished.

There are several work for the multiple viewpoint pose

estimation, such as those by Zeng et al. [5] and Kanezaki et

al. [6]. As such, there are several work for object pose esti-

mation from multiple viewpoints, however these methods do

not consider which viewpoint is effective for the estimation.

Recently, some work focuses on predicting next-best-view

for object pose estimation. Doumanoglou et al. [7] and Sock

et al. [8] proposed next-best-view prediction methods for

multiple object pose estimation based on Hough Forest [9].

However, we acknowledge that [7] and [8] could not be

applied for the category-level object pose estimation since
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Fig. 2 Viewpoint selection problem in pose estimation from mul-
tiple viewpoints.

they are designed only for instance-level object pose estima-

tion. As the pose estimation on category-level has not been

studied in the past, we initiated the study with the proposed

method.

In this paper, we propose a method for estimating the next

viewpoint, where the pose ambiguity will be minimized. In

the multiple viewpoint pose estimation, to estimate the ob-

ject’s pose accurately, it is necessary to choose the best set

of viewpoints. Here, given an observation of an object, we

consider how to select one more viewpoint to observe the

object. We call the viewpoint the next best viewpoint. A

better viewpoint helps us to obtain a more accurate object

pose, as shown in Figure 1. It is easy to select the best view-

point when we know the current viewpoint and the shape

of the object accurately. However, if the pose estimation

result from the current viewpoint is ambiguous, it is diffi-

cult to determine in which direction and how far the robot

should move to reach the best next viewpoint. The question

here is that, how can we know the best next viewpoint from

the current observation as illustrated in Figure 2.

In this paper, we propose a method of viewpoint recom-

mendation for accurate object pose estimation. To evaluate

the effectiveness of a candidate viewpoint, we define a met-

ric called “pose ambiguity”, which reflects how ambiguous

the pose estimation is. By finding the viewpoint where the

pose ambiguity is the minimum, we can obtain the next

viewpoint, which will be the best viewpoint to estimate the

object’s pose by combining with the current observation.

To make the problem simple and focus on the fundamen-

tal idea, in this paper, we limit the movement of the depth

camera only to rotation around the z-axis of the target ob-

ject. However, the proposed method and discussion could

be straightforwardly extended to 3D rotation. We evaluate

the effectiveness of the proposed method on dataset gener-

ated from a subset of publicly available 3D object dataset:

ShapeNet [10].

Our contribution can be summarized as follows:

• We define a metric “pose ambiguity” to evaluate how

difficult the pose estimation is.

• We propose a next viewpoint recommendation method

which finds the best next viewpoint where the pose am-

biguity is minimized.
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Fig. 3 Pose ambiguity minimization (Input image with 90◦ ro-
tation angle).

The remaining of this paper is structured as follows: In

Section 2, the proposed method will be introduced. After

that, in Section 3, we will explain the evaluation setting. In

Section 4, we will discuss the evaluation results. Finally, we

conclude our paper in Section 5.

2. NEXT VIEWPOINT RECOMMEN-

DATION

2.1 Overview

We define a metric called “pose ambiguity” given two dif-

ferent viewpoints which should be minimized. Since the cur-

rent viewpoint may be ambiguous, by handling the current

view point φ and the angle to the next best viewpoint from

the current viewpoint δ as latent variables, the pose am-

biguity function is decomposed into pose ambiguity under

given two viewpoints and viewpoint ambiguity under a given

observation.

2.2 Pose Ambiguity Minimization Framework

In this framework, the method measures the pose ambi-

guity in a quantitative way. We define the pose ambiguity

G as a functional of the pose likelihood distribution p(θ).

For example, G can be defined by the entropy of p(θ) as

G(p) =

∫
−p(θ) log p(θ)dθ. (1)

Here, we evaluate the pose likelihood distribution under

an image observed from the initial viewpoint, and then yield

the rotation angle to the best next viewpoint. Therefore, we

define the pose likelihood distribution as a conditional distri-

bution p(θ|I, δ) when an image I from the current viewpoint

and a rotation angle δ are given. By using the formulation,

we find the best viewpoint by minimizing the entropy as

δ̂ = arg min
δ

G(p(θ|I, δ)). (2)

An example of G(p(θ|I, δ)) in terms of all δ is illustrated in

Figure 3.

To handle the ambiguity of the initial viewpoint, we fur-

ther decompose the pose likelihood distribution as follows:

p(θ|I, δ) =

∫
p(θ|φ, δ)p(φ|I)dφ. (3)

The first term p(θ|φ, δ) indicates the pose likelihood distri-

bution under two given viewpoints φ and φ + δ, and the
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Fig. 4 Viewpoint likelihood distribution p(φ|I) (Input image
with 90◦ rotation angle).

rest part p(φ|I) indicates the viewpoint likelihood under a

given observation. In the following sections, we explain more

details on the two distributions.

2.3 Estimation of Viewpoint Likelihood Distribu-

tion p(φ|I)
Since the viewpoint of an observation is difficult to obtain,

the viewpoint likelihood distribution can be considered as a

relative pose estimation from the initial viewpoint. We may

only obtain an estimation result if we take a regression-based

approach for the pose estimation, such as Pose-CyclicR-

Net [3],

φ = f(I), (4)

where I represents a given image and f the pose estimator.

Since we have many images Ii of various objects in a class,

by applying pose estimation for many images, we can obtain

many pose estimation results φi. From these pose estima-

tion results and their groundtruth, we can obtain a huge

number of pairs of an estimation result and a ground truth .

By applying density estimation to the data, we can obtain a

conditional distribution as p(φ|f(Ii)) = p(φgt|φest), where

φgt represents the ground truth and φest the estimation

result.

By using the conditional distribution, we can obtain the

viewpoint likelihood distribution as,

p(φ|I) = p(φ|f(I)) (5)

for a regression-based object pose estimator. This viewpoint

likelihood distribution is illustrated in Figure 4.

2.4 Estimation of Pose Likelihood Distribution

p(θ|φ, δ)
The likelihood represents how accurately the objects’ pose

can be estimated given the two viewpoints; φ and φ + δ,

where φ represents the current viewpoint and δ the rotation

angle to the next viewpoint. The pose likelihood distribu-

tion given two viewpoints is illustrated in Figure 5. Here, we

simply decompose the likelihood distribution into two pose

likelihoods as

p(θ|φ, δ) = p(θ|φ)p(θ|φ+ δ), (6)

where p(θ|φ) and p(θ|φ+ δ) denote the pose likelihood dis-

tributions given a viewpoint φ and φ+ δ, respectively. This
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Fig. 5 Pose likelihood distribution given two viewpoints (Input
image with 90◦ rotation angle).
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Fig. 6 Example of images observed from different elevation an-
gles.

equation holds by assuming p(θ), which is the pose likelihood

without any information, follows a uniform distribution.

2.5 Pose Estimation θe

Finally we can estimate the object’s pose from two view-

points: the initial viewpoint and the next viewpoint. Here,

I1 is the image observed from the initial viewpoint. After

rotating the depth camera δ degrees, we obtain I2, which is

the image observed from the next viewpoint.

We estimate the pose for these two viewpoints θe as the

average of pose estimation results from I1 and I2 (by con-

sidering the rotation angle δ) as

θe =
φ1 + φ2 − δ

2
, (7)

where φ1 = f(I1) is the pose estimation from the initial

viewpoint and φ2 = f(I2) that from the next viewpoint.

3. Evaluations

3.1 Dataset

To show the effectiveness of the proposed viewpoint rec-

ommendation method, we performed a simulation-based

evaluation. For the simulation, we use 135 3D models of

“Mug” class in the ShapeNet dataset [10]. Rendering them

by rotating around the z-axis, we obtain 360 depth images

in the range of [0◦, 360◦) for each model. We apply the

rendering from several elevation angles of the virtual depth

camera for each model. Images of 100 objects are randomly

selected for the training set and the rest are used for the

testing set.
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Fig. 7 Network architecture.

3.2 Pose Estimation Method

We prepared a network architecture similar to the Pose-

CyclicR-Net proposed by Ninomiya et al. [3] as the pose es-

timator. The modified network architecture in the proposed

method is shown in Figure 7. Since we assumed that the

object pose variation is limited to a single axis rotation, we

modify the network output to a pair of trigonometric func-

tions (cos θ, sin θ) instead of the original quaternion. We

train the pose estimator using the training images.

3.3 Evaluation Criteria

We evaluated how the recommended viewpoints are ap-

propriate for the pose estimation by using several criteria.

One criterion is the Mean Absolute Error (MAE) of the

pose estimation results with the ground truth. The pose

estimation results are obtained by using a pair of the initial

viewpoint and the recommended viewpoint. By considering

the circularity of angles, the error can be calculated as

MAE =
1

N

N∑
i=1

d(θie, θ
i
g), (8)

where N represents the number of images, θie and θig are the

pose estimation result and the ground truth, respectively.

d(θie, θg)i is the absolute difference of the poses considering

the circularity defined as

d(θe, θg) =

{
|θe − θg| if |θe − θg| > 180◦,

180◦ − |θe − θg| otherwise.
(9)

3.3.1 Comparative Methods

We compared the pose estimation results by the proposed

method and several other baseline methods. As a baseline,

we use pose estimation from a single viewpoint which just

applies Pose-CyclicR-Net-like Network to the input image.

We adapt two other baseline methods from [8] which are

“Random” and “Furthest”.

4. Results

The experimental results are summarized in Table 1.

Here, for all elevation angles, the proposed method outper-

formed all other comparative methods. This result clearly

shows that the proposed method is promising and achieves

better object pose estimation results. We successfully man-

aged to reduce the pose ambiguity in the difficult observation

viewpoint which has been mentioned in this paper.

5. Conclusion

We proposed a new idea for the best next viewpoint rec-

Table 1 Comparison of overall Pose Estimation Accuracy in
MAE.

Elevation Single Random Furthest Proposed
angle

0◦ 18.36◦ 16.34◦ 14.91◦ 14.18◦

15◦ 15.55◦ 14.01◦ 13.35◦ 11.58◦

30◦ 15.40◦ 13.87◦ 12.75◦ 11.96◦

45◦ 10.71◦ 9.32◦ 8.81◦ 8.28◦

60◦ 8.15◦ 7.27◦ 7.15◦ 6.31◦

75◦ 7.36◦ 6.57◦ 6.36◦ 5.15◦

ommendation for an accurate pose estimation by minimiz-

ing the pose ambiguity by considering the current viewpoint

and rotation angle as latent variables. We showed that the

proposed method outperforms the other three comparison

methods, and confirmed that a reliable and high pose esti-

mation accuracy is achievable by the best next viewpoint.
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