LiDARを用いた自車両位置認識結果の信頼度推定*

赤井 直紀¹⁾ モラレス ルイス 洋一¹⁾ 平山 高嗣¹⁾ 村瀬 洋²⁾

Reliability Estimation for Self-Vehicle Pose Recognition Result Using LiDAR

Naoki Akai Luis Yoichi Morales Takatsugu Hirayama Hiroshi Murase

This paper presents a reliability estimation method of localization results. In the method, an egovehicle pose and reliability are treated as hidden variables and are estimated simultaneously via Rao-Blackwellized particle filter (RBPF). The ego-vehicle pose is estimated by a sampling-based method, i.e., particle filter, and the reliability is estimated by an analytical method using prediction results of convolutional neural network (CNN). The CNN learns whether localization has failed or not and its output is used as an observable variable to estimate the reliability in the RBPF. Through experiments, it is shown that the estimated reliability could be used as an exact criterion for describing successful and fault localization results.

$\textbf{KEY WORDS}: \textbf{Electronics and control, Localization, Autonomous Driving} \ (E1)$

1. はじめに

位置推定とは、与えられた地図上でセンサ(もしくはセンサ を搭載した車両)の相対位置を求める問題である。多くの場合、 地図とセンサ観測の間で対応を求め、その対応から作成され る誤差関数を最小とする状態を求めることで位置を推定する ⁽¹⁾.もしくは、センサ観測をモデル化し、その観測が得られ る最大の確率となる状態を求める方法をとる⁽²⁾.ここで重要 なことは、最小の誤差、もしくは最大の確率となる状態が、数 値的に尤もらしいという状態を意味するのみであり、正しい 位置であるという保証がないことである。すなわち、位置推 定の成功や失敗を自動運転車両自身が判断する術はなく、位 置推定結果の保証が行えないということを意味する。

本稿では、位置推定結果の保証をすることを目的とし、そ の信頼度を求める問題を考える.このために、位置推定結果の 正誤を判断するための機械学習アルゴリズムを導入する.し かしながら、機械学習による識別の結果が完全になるとは言 い難い.この考えに基づき、機械学習による推定の正誤判断の 結果を新たな可観測変数として利用し、位置推定結果の信頼 度を推定するモデルを提案する.提案法では、車両の位置と上 記信頼度を同時に求める問題を定式化し、Rao-Blackwellized particle Filter (RBPF)を用いてこの問題を解く.実機車両 およびシミュレーションを用いて得られた実験結果より、推 定された信頼度が位置推定結果の正誤を正しく説明するため に利用できることを示す.

1) 名古屋大学未来社会創造機構 (464-8601 名古屋市千種区不老町)

なお,本稿で述べられる手法の基礎部分は,文献⁽³⁾にて提 案されている.しかし従来法には,計算時間の課題があり,自 動車のような高速な移動体に実装することが困難であった.本 稿の貢献は,計算時間の問題を解決し,実際の自動車で利用 可能とした点にある.

2. 関連研究

前述の通り位置推定の問題を解くことで得られる結果は,数 値的に尤もらしいという状態のみであり,1つ位置推定の結 果が手に入った場合に,その結果の正誤までは判断できない. これに対して有効な方法は,複数の位置推定法を用いた冗長 なシステムを構築することである(例えば^(4,5)).これにより, 多数決のような方法を採用し,誤った位置推定結果を検知す ることができる.しかしながら,あくまで各々の位置推定結 果に対する信頼度は定義されておらず,多数決の結果が正し い結果となるとは言えない.

位置推定の問題を解くために、よく Monte Carlo localization (MCL)が利用される⁽²⁾. MCLによる位置推定の失敗状態 を検知するために、Gutmannらは augmented MCL (AMCL) を提案した⁽⁶⁾. なお、多くの場合 AMCL と言うと adaptive MCL を表すが、本稿では augmented MCL を表すこととす る. AMCL では、尤度の履歴を監視することで、位置推定状 態の失敗を検知する. しかしながら、尤度はセンサ観測をモ デル化することで得られるものであり、かつ動的な環境で確 実なセンサ観測のモデル化を行うことは困難であるため^(7,8)、 動的環境における AMCL による失敗検知が、必ずしも妥当に なるとは言い難い.

近年では、機械学習を用いて位置推定の失敗を検知する取

^{* 2018}年10月23日 受理.

²⁰¹⁸ 年 10 月 19 日 自動車技術会秋季学術講演会において発表.

²⁾ 名古屋大学大学院情報学研究科

⁽E-mail: akai@coi.nagoya-u.ac.jp)

組も報告されている^(9,10,11). この様な例は,GNSSを用い た方法に対しても適用例がある⁽¹²⁾.しかしながら,機械学習 による識別の性能が完全になるとは言い難いが,これらの方 法では機械学習の結果を直接利用している.一方で提案法で は,機械学習による識別の結果が不完全であることを前提と し,位置推定結果の信頼度を隠れ変数と見なして推定する方 法を用いる.そのため,機械学習の識別に誤りが含まれる場 合においても,安定して信頼度を推定できる.

本稿で述べる方法の基礎的な部分は,文献⁽³⁾において提案 されている.文献⁽³⁾の手法では,画像ベースのデータを畳み 込みニューラルネットワーク (convolutional neural network: CNN)に入力して,位置推定の成功・失敗の判断を行ってい た.この画像データの作成,および CNN による計算時間の コストが大きいため,自動車のような高速な移動体への実装 が困難であった.本稿における提案は,CNN への入力データ の改善を行い,識別性能の低下がない状態での計算速度の向 上を実現する.結果として,約時速 50 km で移動する自動車 に搭載して利用可能となることを示す.

3. 位置と信頼度の同時推定

3.1. 位置推定における信頼度の定義

工学分野において信頼度とは「対象が与えられた条件で,規 定の期間中,要求された機能を果たすことが出来る性質を確 率で表現したもの」と定義される.通常自動運転においては, 位置推定結果,すなわち推定された位置情報は,他のモジュー ルに利用される (例えば物体認識や走行制御など).そのため, 使用する他のモジュールに従い,位置推定結果に対する許容 誤差が定義されるといえる.そこで本稿では,この許容誤差 内に位置推定結果が含まれる場合を,位置推定が要求された 機能を果たしている (成功)状態であると定義する.つまり位 置推定結果に対する信頼度とは,この許容誤差内に位置推定 結果が含まれる確率を意味する.

位置推定に成功・失敗している状態はrを用いて表す.r = 1が成功,r = 0が失敗状態を表すものとする.すなわち信頼 度はp(r = 1)と表記される.なお文献⁽³⁾では,rを0から 1の連続値として定義しているため, $\int rp(r)dr$ を信頼度とし て定義していることに注意されたい.

3.2. グラフィカルモデル

図1には、提案法で利用されるグラフィカルモデルを示す. 本モデルでは、自車両位置 \mathbf{x} と信頼度 r が隠れ変数として扱われている.これらの隠れ変数を、センサ観測 \mathbf{z} 、制御入力(もしくは移動量) \mathbf{u} ,地図 \mathbf{m} ,および学習器による位置推定結果の正誤判断 d の可観測変数を用いて同時に推定する.なお正誤判断 d は、位置推定に成功している確率を表す変数である.ここで正誤判断 d は、信頼度 p(r = 1) と同様の意味を持つが、あくまで d は可観測変数であり、r は d を基に推定

Fig.1 Graphical model for the proposed model $^{(3)}$.

される変数であることに注意されたい.

我々の目的は,以下に示す時刻 *t* の自己位置 **x**_{*t*} と信頼度 *r*_{*t*} の同時確率分布を求めることである.

$$p(\mathbf{x}_t, r_t | \mathbf{z}_{1:t}, \mathbf{u}_{1:t}, \mathbf{m}, d_{1:t})$$
(1)

ここで1:*t*は,時刻1から*t*の時系列を表す.まず上式に乗 法定理を適用して次式を得る.

$$p(\mathbf{x}_t | \mathbf{z}_{1:t}, \mathbf{u}_{1:t}, \mathbf{m}, d_{1:t}) p(r_t | \mathbf{x}_t, \mathbf{z}_{1:t}, \mathbf{u}_{1:t}, \mathbf{m}, d_{1:t})$$
(2)

本研究では、Rao-Blackwellized particle filter (RBPF)を用 いて上述の同時確率分布を求めることとし、上式第1項の位 置に関する分布をサンプリング (PF)により、第2項の信頼度 に関する分布を解析により求める.

まず第1項の分布に着目する.本モデルでは、位置に依存 する可観測変数としてセンサ観測 \mathbf{z}_t と正誤判断 d_t が利用可 能であるため、ベイズの定理を2度適用することができる.

$$p(\mathbf{x}_t | \mathbf{z}_{1:t}, \mathbf{u}_{1:t}, \mathbf{m}, d_{1:t}) = \eta p(\mathbf{z}_t | \mathbf{x}_t, \mathbf{m})$$
(3)

 $p(d_t|\mathbf{x}_t, \mathbf{z}_t, \mathbf{m})p(\mathbf{x}_t|\mathbf{z}_{1:t-1}, \mathbf{u}_{1:t}, \mathbf{m}, d_{1:t-1})$

ここでηは正規化係数を表す.また上述の式変形の際には,マ ルコフ性を適用している.次に,上式に全確率の定理を適用 する.

$$\eta p(\mathbf{z}_t | \mathbf{x}_t, \mathbf{m}) \int p(d_t | r_t, \mathbf{x}_t, \mathbf{z}_t, \mathbf{m}) p(r_t) dr_t$$
$$\int p(\mathbf{x}_t | \mathbf{x}_{t-1}, \mathbf{u}_t) p(\mathbf{x}_{t-1} | \mathbf{z}_{1:t-1}, \mathbf{u}_{1:t-1}, \mathbf{m}, d_{1:t-1}) d\mathbf{x}_{t-1}$$
(4)

上述の確率分布を PF によって推定する場合, $p(\mathbf{z}_t | \mathbf{x}_t, \mathbf{m}) \geq \int p(d_t | r_t, \mathbf{x}_t, \mathbf{z}_t, \mathbf{m}) p(r_t) dr_t 0 2 つの分布を用いてパーティク ルの尤度を計算することになる.1つ目の分布は観測モデルと して知られている⁽²⁾.2つ目の分布に関しては,次章に詳細 を述べる.$

次に式(2)の第2項に着目する.上述の式展開と同様に,ベ イズの定理とマルコフ性を適用する.

$$p(r_t | \mathbf{x}_t, \mathbf{z}_{1:t}, \mathbf{u}_{1:t}, \mathbf{m}, d_{1:t}) =$$

$$\eta p(d_t | r_t, \mathbf{x}_t, \mathbf{z}_t, \mathbf{m}) p(r_t | \mathbf{x}_t, \mathbf{z}_{1:t-1}, \mathbf{u}_t, d_{1:t-1})$$
(5)

次に,上式に全確率の定理を適用する.

$$\eta p(d_t | r_t, \mathbf{x}_t, \mathbf{z}_t, \mathbf{m}) \int p(r_t | r_{t-1}, \mathbf{u}_t) p(r_{t-1} | \mathbf{x}_{t-1}, \mathbf{z}_{1:t-1}, \mathbf{u}_{1:t-1}, d_{1:t-1}) dr_{t-1}$$
(6)

Fig.2 Experimental platform.

ここで $p(r_t|r_{t-1}, \mathbf{u}_t)$ は、車両の移動に伴う信頼度の変化を表 す分布であり、 $p(d_t|r_t, \mathbf{x}_t, \mathbf{z}_t, \mathbf{m})$ は、信頼度を推定するため の尤度分布である。一般的に、車両の移動に伴い位置推定の誤 差は増大するため、信頼度は減衰すると考えられる。そのため $p(r_t|r_{t-1}, \mathbf{u}_t)$ を信頼度減衰モデル (reliability decay model) と呼ぶ。また $p(d_t|r_t, \mathbf{x}_t, \mathbf{z}_t, \mathbf{m})$ は、位置推定結果に対する正 誤判断に対する 尤度分布であるため、判断モデル (decision model) と呼ぶ。これらの詳細は次章にて述べる。

3.3. 同時推定の利点

式(4)に示す様に、本手法ではパーティクルの尤度計算を 2 種類の尤度分布を用いて行う. $\int p(d_t|r_t, \mathbf{x}_t, \mathbf{z}_t, \mathbf{m}) p(r_t) dr_t$ を用いて尤度計算を行うことで、同時推定による利点を得る ことになる.この分布は、信頼度が高い場合に位置推定結果 が正しいと判断された場合、または、信頼度が低い場合に位 置推定結果が誤っていると判断された場合に高い尤度をとる. すなわち本手法では、位置推定結果に対する正誤判断が突発 的に誤った場合に、パーティクルの尤度が低下することとな る.そのため、正誤判断結果 d がノイズを含む場合のロバス ト 性を向上させることになる.

4. 実装

4.1. 実験車両

図2には、本研究で使用した車両を示す.前章で述べた同時 推定の問題を解くために、車両上部のLiDAR (HDL-64E)と CANによる移動量の情報を用いた.なお使用したLiDARは 3次元の計測が可能であるが、実験の評価の容易さなどを考慮 し、2次元のスキャンを仮想的に作りだして利用することとし た.スキャンデータの仕様は、最大計測距離80m、計測角度 190 degree、角度分解能0.125 degreeとした.なおスキャンの 作成にあたっては、以下のセンサの仕様を参考としたhttps: //en.manu-systems.com/HOK-UXM-30LAH-EWA.shtml.

4.2. 位置推定結果の正誤判断の学習

文献⁽³⁾で提案された手法では,画像データを CNN に入力 し,位置推定の正誤判断の回帰を行っている.入力画像の例 を図4に示す.画像データの作成,および処理の計算コスト が高く,従来法を自動車に適用することが困難であった.提案 法では,軽量の計算プロセスで使用できるデータを用いるこ とで,性能の低下なく計算速度を向上させる.

CNN に入力されるデータを作成するにあたり,文献⁽²⁾で 述べられている観測モデルを参考とする.文献⁽²⁾では,高速 にパーティクルの尤度を計算するために,尤度場モデル (likelihood field model: LFM)が提案されている.LFM による 尤度計算では,センサの距離データ r_z とその計測が当たった 地点から最も近い地図上に存在する障害物までの距離 d_z が用 いられる.CNN に入力されるデータ D は以下の様になる.

$$D = (\mathbf{z}_0, \mathbf{z}_1, \dots, \mathbf{z}_K) \tag{7}$$

$$\mathbf{z}_i = ({}^r z_i, {}^d z_i)^T \tag{8}$$

ここで K はセンサ観測の数を表す. このデータは, 横 K, 高 さ 1, チャンネル数 2 の画像データと見なされる. なお CNN の構造を作成するにあたっては, 文献⁽¹³⁾で提案されている 2 チャンネルモデルを参考とした.

学習データの作成にあたり、まず 3 次元地図を作成し、そ の地図に基づいて 3 次元点群を用いた位置推定 (3D NDT ^(14, 15, 16))を行った.その結果のマッチングにずれがないこ とを目視で確認し、その際の 2 次元の位置・姿勢の状態を位 置推定成功状態とし、ラベル $y_i = 1$ を付与した.この状態に 対して故意的にノイズを加えた状態を作成し、元の推定位置 とのずれ量が一定以上になった状態を失敗状態とし、ラベル $y_i = 0$ を付与した.ノイズとしては、任意の分散に従うガウ ス分布からサンプリングされた値を用いた.ずれ量に関する 閾値は、位置誤差 $\sqrt{\Delta x^2 + \Delta y^2}$ が 50 cm、角度誤差 $\Delta \theta$ が 3 degree とした.CNN は以下に示すロス関数を最小にするよ うに学習を行う.

$$\frac{\lambda}{2} ||\omega^{\text{net}}||_2 + \sum_{i=1}^{N} (y_i - d_i)^2 \tag{9}$$

ここで λ は正則化項に対する係数, $\omega^{net} \geq d_i$ はネットワーク の重みと出力, N は学習データ数, $y_i \in \{0,1\}$ はラベルであ る.出力層にはシグモイド 関数を活性化関数として利用し, d の値域を 0 から 1 とした.

4.3. 信頼度減衰モデル

信頼度減衰モデル $p(r_t|r_{t-1}, \mathbf{u}_t)$ では,時刻 t の信頼度は,時刻 t-1 の信頼度と時刻 t の制御入力 \mathbf{u}_t に依存する.しかしながら,これらの関係を厳密にモデル化することは困難である.本研究では,以下に示すヒューリスティックな関係式を利用することとした.

$$p(r_t = 1) = \left(1 - (\alpha_1 \Delta d_t^2 + \alpha_2 \Delta \theta_t^2)\right) p(r_{t-1} = 1)$$
(10)

ここで $\alpha_1 \ge \alpha_2$ は任意係数, $\mathbf{u}_t = [\Delta d_t, \Delta \theta_t]^T$ は CAN より 得られる進行方向と角度方向に関する移動量である.

4.4. 判断モデル

判断モデル $p(d_t|r_t, \mathbf{x}_t, \mathbf{z}_t, \mathbf{m})$ は,信頼度に対する位置推定の正誤判断の尤度分布として定義される.本研究では、この分布を以下の様にモデル化する.

$$p(d_t|r_t, \mathbf{x}_t, \mathbf{z}_t, \mathbf{m}) = \begin{pmatrix} d_{\text{pos}} \\ d_{\text{neg}} \end{pmatrix}^T \cdot \begin{pmatrix} p_{\text{pos}}(d_t|r_t, \mathbf{x}_t, \mathbf{z}_t, \mathbf{m}) \\ p_{\text{neg}}(d_t|r_t, \mathbf{x}_t, \mathbf{z}_t, \mathbf{m}) \end{pmatrix}$$
(11)

ここで $d_{\text{pos}} \geq d_{\text{neg}}$ は任意の係数であり, $d_{\text{pos}} + d_{\text{neg}} = 1 の$ $条件を満たす.また <math>p_{\text{pos}} \geq p_{\text{neg}}$ は正誤判断が成功,および失 敗する際の確率分布を表す.本研究では, $p_{\text{pos}} \geq p_{\text{neg}}$ を以下 の確率分布により定義した.

$$p_{\text{pos}}(d_t | r_t, \mathbf{x}_t, \mathbf{z}_t, \mathbf{m}) = \frac{d_t^{a-1} (1 - d_t)^{b-1}}{B(a, b)}$$
(12)

$$p_{\text{neg}}(d_t | r_t, \mathbf{x}_t, \mathbf{z}_t, \mathbf{m}) = \text{unif}(0, 1)$$
(13)

ここで $B(\cdot)$ と unif(·) はベータ関数と一様分布を表す. *a* と *b* の値は実験的に決定することとし, *a* = 5, *b* = 1 (if r_t = 1), および *a* = 1, *b* = 5 (if r_t = 0) をそれぞれ用いることとした. $d_{\text{pos}} \ge d_{\text{neg}}$ に関しては,次章で述べる事前実験の結果 (5.2.) を参考にし,それぞれ $d_{\text{pos}} = 0.88, d_{\text{neg}} = 0.12$ とした.

4.5. RBPF

パーティクルの状態 s は 2 次元空間の車両位置と信頼度と し, s = $[x, y, \theta, p(r = 1)]^T$ とする.提案する RBPF では,車 両位置を PF により求め,信頼度を解析計算により求める.時 刻 t における i 番目のパーティクルの重み ω_t^i は,次式により 計算する.

$$\omega_t^i = p(\mathbf{z}_t | \mathbf{x}_t, \mathbf{m}) \int p(d_t | r_t, \mathbf{x}_t, \mathbf{z}_t, \mathbf{m}) p(r_t) dr_t \omega_{t-1}^i \quad (14)$$

なお実装では、パーティクル数 *M* は 200(固定)とした.また 信頼度が 95 %を低下した際に、位置推定結果が失敗している と判断し、パーティクルの分布を現在の推定位置を中心にし て膨張させることとした⁽¹⁷⁾.

5. 実験

5.1. 実験環境

図3に、本研究で使用した実験環境を示す.本実験で複数回 のデータ収集を行い、それぞれ別のデータを用いて位置推定 の正誤判断の学習と実験を行った.本経路の1周の全長はお よそ17kmであり、実験時の車両の最大速度は約時速50km である.

5.2. 位置推定正誤判断における入力データの比較

位置推定正誤判断を行うにあたり,入力データによる判断性 能の比較をまず行った. 文献⁽²⁾では, PFの尤度計算のため にビームモデル (beam model: BM)も提案されている. BM

Fig.3 Experimental environment.

Fig.4 Input data examples of LFM-, BM-, and image-based data. Top and bottom data show successful and fault cases of data, respectively.

では、LFM で使用する情報に加え、センサ位置からレーザ ビーム方向の障害物までの距離 m_z も利用される.今回の比 較では、LFM、BM、および文献⁽³⁾ で利用される画像ベース のデータを用いて比較を行った.なお、画像データは解像度 0.1 m で 800 × 500 の大きさで作成し、CNN に入力する前に 160 × 100 に縮小した.入力データの例を図4に示す.

学習用のデータとして 27362 個のデータを作成した (13681 個の位置推定成功・失敗データをそれぞれ含む).まずこれら のデータの平均の作成時間を計測した.データ作成の処理は CPU (Intel(R) Xeon(R) CPU E5-1650 v3 @ 3.50 GHz)上 で行った.表1にそれぞれのデータ作成に要した平均時間を 示す.BM ではセンサ位置から障害物までの距離を計算する ためにレイキャスティングを行う必要があるため,LFMに比 べて計算時間が長くなっている.

次にテスト用のデータを 22638 個作成した (11319 個の位置 推定成功・失敗データをそれぞれ含む).表1には,それぞれ 1つのデータを CNN により処理するのに要した平均時間も

Table. 1 Average data creation and prediction times per

1	one data.			
		Data creation time (msec)	Prediction time (msec)	
	LFM	0.006	0.390	
	BM	3.953	0.397	
	Image	13.545	0.861	

ono data

Fig.5 ROC curves. TP, FP, FN, and TN denote true positive, false positive, false negative, and true negative, respectively.

示されている. CNN の処理は GPU (GeForce GTX TITAN X) 上で行った.表1から, LFM に基づくデータの処理が他 のデータに比べて高速に行えていることが確認できる.

また図 5 には、それぞれのデータによる正誤判断の性能を 評価した際の receiver operating characteristic (ROC)曲線 を示す. CNN は 0 から 1 の連続値を出力するため、0.5 を閾 値とし、出力値が 0.5 以上となった場合を成功と判断してい る、それ以外の場合を失敗と判断しているものとした.図 5 か らわかるように、どのデータでも同様の性能が得られている ことが確認できる.なお分類精度はそれぞれ、LFM 87.58 %、 BM 89.33 %、Image 86.68 %となった.以上の結果から、提 案法で用いられる LFM に基づくデータを利用することで、著 しい性能の低下なく、計算を高速化できることが確認できた.

5.3. 走行実験

図6に,提案法によって推定された走行軌跡と信頼度,お よび3次元点群を用いた位置推定法により推定された走行軌 跡をそれぞれ示す.なお本稿では,3DNDTによって推定さ れた軌跡を位置推定結果の真値と仮定している.提案法では 2次元のセンサ観測のみを用いて位置推定を行っているため, 位置推定の精度は3DNDTに比べて精度が劣る状況がある. 特に図6Aでは,提案法により推定された軌跡が3DNDTに よる推定軌跡から離れていることが確認できる.提案法により 推定された信頼度は,この状況で95%を下回ったため,パー ティクルの分布が膨張された.結果として,位置推定の失敗

Fig.6 Estimated trajectories by the proposed method and 3D NDT scan matching. Color level denotes the estimated reliability.

状態から復帰し,正しい位置の推定が可能となった.

信頼度の低下した状況の例を図7に示す.図7左は信頼度 が低いと判断された状況である.この地点には傾斜があるた め、2次元のセンサ観測のみを用いて、時系列の位置推定問題 を解くと、推定の失敗が頻発する.特に黄色枠で囲んだ領域 を見てわかるように、ランドマーク(黒)とセンサ観測(赤)が 適切に照合されていないことが確認できる.提案法は.この 状況を信頼度が低い状態であると判断し、パーティクルの分 布の膨張処理を行った.結果として、図7右に示す様に、位 置推定の成功状態へ復帰することができた.

しかし一方で,図6Bに示す様に,位置推定に成功している (3D NDTによる推定軌跡に近い)状態においても信頼度が低 下するような状況があった.図8には,その様な状況の例を 示す.これらの状況はランドマークとなりえる物体が少ない 環境を走行しており,かつ路面のようなランドマークとして 地図化されていない障害物を多くセンサが観測している状況

Fig.7 Example of unreliable scene detection and recovery performance. The green lines represent road markers, e.g., lane and crosswalk.

Fig.8 Miss-recognition cases where the localization result is unreliable.

である. CNN による位置推定の成功・失敗の学習は、おおよ そセンサ観測とランドマークの照合の失敗を学習していると いえる⁽³⁾. そのためこのような状況では、CNN による正誤 判断自体がうまく機能せず、誤った信頼度を推定してしまう こととなった.

5.4. シミュレーション実験

シミュレーションを用いて推定された信頼度 r_t,最尤パー ティクルの状態に対する CNN の正誤判断結果 d_t を図9上段 に,位置推定結果の位置と角度の誤差を図9中段,および推 定された軌跡と真値を図9下段にそれぞれ示す.この実験で は,途中で位置推定に失敗するパラメータをわざと利用して いるため,移動に伴い誤差は増大する.しかし提案法を用い ることで,誤差が増大した状態で信頼度が低下し,位置推定 結果の失敗を早期に検知することができた.この失敗が検知 された時点でパーティクルの分布を膨張させれたため,最後 まで位置を追跡することができた.

最尤パーティクルに対する CNN の正誤判断結果は,推定 誤差が小さい場合でも振動していることが確認できる.これ は CNN による識別が完全に正しい結果となっていないため である.一方で提案法により推定された信頼度は,誤差が上 昇した状態を信頼度が低い状態であると正確に認識している. CNN の結果を直接利用するよりも,提案法を用いることで安 定した推定が可能となることが確認できた.

6. おわりに

本稿では、位置推定結果に対する信頼度を求める問題に関

Fig.9 Simulation result with incorrect localization parameters. The trajectory with dark color represents areas where the unreliable localization results as shown in Fig. 7 could be exactly detected.

して議論した.基礎部分に関しては、すでに文献⁽³⁾で提案し ているが、計算時間の問題があった.これに対して本稿では、 データの改善を行うことで、高速化する手法を提案した.こ れにより、時速 50 km で移動する自動車の位置と信頼度を推 定することを実現し、その有用性を実機、およびシミュレー ション実験により確認した.実験結果から、提案法により推 定された信頼度が、位置推定結果の正誤を正しく説明できる ことを示した.

今後は、本稿で述べた高精度かつ高信頼度な位置推定機能 を活用することで、文献^(18, 19)で述べられているような死角 のある交差点における安全な行動選択に関する研究、またそ のような運転行動を構成する運転行動の特徴表現に関する研 究⁽²⁰⁾を行う予定である.

謝 辞

本研究は国立研究開発法人科学技術振興機構の研究成果展開 事業「センター・オブ・イノベーションプログラム (名古屋 COI: 高齢者が元気になるモビリティ社会)」,科研費 40786092,お よび人工知能研究振興財団の支援により行われた.

参考文献

 P. J. Besl et al. A method for registration of 3-D shapes. IEEE Trans. Pattern Anal. Mach. Intell., Vol. 14, No. 2, pp. 239-256, (1992.)

- S. Thrun et al. *Probabilistic Robotics*. The MIT Press, 2005.
- (3) N. Akai et al. Simultaneous pose and reliability estimation using convolutional neural network and Rao-Blackwellized particle filter. Advanced Robotics, Vol. 32, No. 17, pp. 930–944, (2018.)
- (4) P. Sundvall et al. Fault detection for mobile robots using redundant positioning systems. In Proc. IEEE ICRA, pp. 3781–3786, (2006.)
- (5) J. P. Mendoza et al. Mobile robot fault detection based on redundant information statistics. In Proc. IEEE/RSJ IROS, (2012.)
- (6) J. Gutmann et al. An experimental comparison of localization methods continued. In Proc. IEEE/RSJ IROS, pp. 454–459, (2002.)
- (7) N. Akai et al. Mobile robot localization considering class of sensor observations. In Proc. IEEE/RSJ IROS, pp. 3159–3166, (2018.)
- (8) N. Akai et al. Toward localization-based automated driving in highly dynamic environments: Comparison and discussion of observation models. In Proc. IEEE ITSC, pp. 2215–2222, (2018.).
- (9) Z. Alsayed et al. Failure detection for laser-based SLAM in urban and peri-urban environments. In Proc. IEEE ITSC, pp. 126–132, (2017.)
- (10) Z. Alsayed et al. 2D SLAM correction prediction in large scale urban environments. In Proc. IEEE ICRA, pp. 5167–5714, (2018.)
- (11) S. Nobili et al. Predicting alignment risk to prevent localization failure. In Proc. IEEE ICRA, pp. 1003– 1010, (2018.)
- (12) L. T. Hsu. GNSS mulitpath detection using a machine learning approach. In Proc. IEEE ITSC, pp. 1414– 1419, (2017.)
- (13) S. Zagoruyko et al. Learning to compare image patches via convolutional neural networks. In Proc. IEEE CVPR, pp. 4353–4361, (2015.)
- (14) E. Takeuchi et al. A 3-D scan matching using improved 3-D normal distributions transform for mobile robotic mapping. In Proc. IEEE/RSJ IROS, pp. 3068– 3073, (2006.)
- (15) N. Akai et al. Robust localization using 3D NDT scan matching with experimentally determined uncertainty and road marker matching. In Proc. IEEE IV, pp. 1357–1364, (2017.)

- (16) N. Akai et al. Autonomous driving based on accurate localization using multilayer LiDAR and dead reckoning. In Proc. IEEE ITSC, pp. 1147–1152, (2017.)
- (17) R. Ueda et al. Expansion resetting for recovery from fatal error in monte carlo localization -comparison with sensor resetting methods-. In Proc. IEEE/RSJ IROS, pp. 2481–2486, (2004.)
- (18) L. Y. Morales et al. Proactive driving modeling in blind intersections based on expert driver data. In Proc. IEEE IV, pp. 901–907, (2017.)
- (19) Y. Yoshihara et al. Autonomous predictive driving for blind intersections. In Proc IEEE/RSJ IROS, pp. 3452–3459, (2017.)
- (20) K. Sama et al. Driving feature extraction and behavior classification using an autoencoder to reproduce the velocity styles of experts. In Proc. IEEE ITSC, pp. 1337–1343, (2018.)