
Image and Vision Computing 68 (2017) 53–63

Contents lists available at ScienceDirect

Image and Vision Computing

j ourna l homepage: www.e lsev ie r .com/ locate / imav is

Regression of feature scale tracklets for decimeter visual localization�

David Wonga,*, Daisuke Deguchib, Yasutomo Kawanishia, Ichiro Idea, Hiroshi Murasea

a Graduate School of Informatics, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8601, Japan
b Information Strategy Office, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8601, Japan

A R T I C L E I N F O

Article history:
Received 5 April 2016
Received in revised form 22 June 2017
Accepted 21 July 2017
Available online 5 August 2017

Keywords:
Ego-localization
Monocular vision
Feature scale

A B S T R A C T

Localization along a route is an everyday necessity for in-vehicle navigation systems, and a vital task for
automated driving technologies. Visual ego-localization promises reliable accuracy even in challenging
urban environments where Global Positioning Systems (GPSs) can fail. Using cameras for localization against
a pre-constructed database requires either the creation of a dense three-dimensional feature point map
and pose estimation of a query camera relative to this map, or image matching along a database route
to determine the capture position of the query camera based on the most similar database image. While
the latter method is potentially less computationally intensive and can provide a more compact database,
localization accuracy is limited by the discrete positioning information at database frame capture locations.
In this paper we propose an image matching method that makes use of image features which are pre-
matched during database construction, allowing linear regression coefficients for the relationship between
capture position and feature scale to be calculated. The capture position of matched query features can then
be estimated to sub-database spacing resolution. By incorporating the visual localization system into a Bayes
estimator, we demonstrate an average monocular vision localization accuracy of 0.33 m in tests on actual
vehicle image streams.

© 2017 Elsevier B.V. All rights reserved.

1. Introduction

Current in-car navigation systems typically rely on a Global
Positioning System (GPS) for ego-localization. While sufficient for
assisting the driver with directions and general positioning in
intelligent vehicle systems, the localization accuracy provided by
consumer GPS setups is typically inadequate for automated driving
tasks. In addition, in some common automotive environments,
GPS fails completely — for example, when the signal is blocked
inside parking buildings or tunnels. GPS is also unsuitable where
multi-level roads exist, as its altitude resolution is not sufficient to
determine which level is being traversed. While these localization
failures may not be of vital importance to simple navigation sys-
tems, as we move toward intelligent vehicles that use precise
localization information to determine suitable vehicle control behav-
ior, accurate and fast localization in all environments is critical.
Vehicle localization systems using expensive Inertial Measurement

� This paper has been recommended for acceptance by Branislav Kisacanin.
* Corresponding author.

E-mail addresses: davidw@murase.is.i.nagoya-u.ac.jp (D. Wong), ddeguchi@
nagoya-u.jp (D. Deguchi), kawanishi@i.nagoya-u.ac.jp (Y. Kawanishi), ide@i.nagoya-
u.ac.jp (I. Ide), murase@i.nagoya-u.ac.jp (H. Murase).

Units (IMUs), laser scanners, and Real Time Kinematc (RTK) GPS have
been extensively researched. However, the hardware simplicity and
cost effectiveness of localization using only visual cameras make it a
very attractive solution.

Computer vision for automotive ego-localization involves deter-
mining the current position of the vehicle relative to a known
map. The constrained nature of roadways allows localization to
be performed by matching the current image from a vehicle-
mounted camera to a stream of pre-captured database images. Visual
localization techniques can be broadly separated into two types:
pose-based methods, which attempt to calculate the exact pose of
the camera view from a dense three dimensional map of points [1,2];
and path-following methods, which determine how far along a
given database sequence the current capture position is, based on
image similarity [3–7]. Pose-based methods can be very accurate,
but depend heavily on the correct matching of many feature points
and calculation of image geometries. Accurately calibrated cameras
and significant processing power are usually required for real-
time operation. Path-following methods, however, provide a more
general localization result which is often suitable for automotive
applications because of the constrained motion allowed by roads.
However, the localization accuracy of path-following methods is
limited by the spacing between database images. A broad spacing
makes for a smaller database size and faster localization but reduces

http://dx.doi.org/10.1016/j.imavis.2017.07.004
0262-8856/© 2017 Elsevier B.V. All rights reserved.

http://dx.doi.org/10.1016/j.imavis.2017.07.004
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/imavis
http://crossmark.crossref.org/dialog/?doi=10.1016/j.imavis.2017.07.004&domain=pdf
mailto:davidw@murase.is.i.nagoya-u.ac.jp
mailto:ddeguchi@nagoya-u.jp
mailto:ddeguchi@nagoya-u.jp
mailto:kawanishi@i.nagoya-u.ac.jp
mailto:ide@i.nagoya-u.ac.jp
mailto:ide@i.nagoya-u.ac.jp
mailto:murase@i.nagoya-u.ac.jp
http://dx.doi.org/10.1016/j.imavis.2017.07.004

54 D. Wong et al. / Image and Vision Computing 68 (2017) 53–63

the spatial resolution of the database. Therefore a technique to
accurately localize a query image captured from a location between
two database images is significant for path-following visual localiza-
tion methods.

In this paper, in order to overcome the localization accuracy
limitation of path-following localization systems from database
image spacing, we propose the use of scale interpolation of matched
local features between frames. Our system takes a scene captured
from a camera and returns a location estimate by comparing feature
points from the input image with those within the database. Where
most path-following localization systems determine the current
vehicle localization based on visual similarity between the input
image and database images, the proposed method makes use of
the continuous scale property of matched image feature points to
provide location estimates at a higher resolution than possible when
using only discrete database image locations. Visual feature points
extracted from corner detectors such as the Scale Invariant Feature
Transform (SIFT) [8] have a size, or scale property. The scale of
these features change with their distance from the camera, and we
make use of this change together with the constrained motion of a
vehicle traveling along a known roadway to provide more accurate
localization from a query image. For localization within large maps,
the database size is an important consideration. By storing only the
strongest feature points in the database, and pre-matching database
features, our method limits the database size while allowing efficient
feature point matching in the localization step. We introduced the
use of interpolation between frames using feature scale in our pre-
vious work [9]. In this paper we expand on this concept and provide
the following contributions:

1. A database structure for image features, which are organized
into groups of corresponding features from consecutive
database frames which we call “feature scale tracklets”.
A novel inclusion is the linear regression coefficients for
each “feature scale tracklet” which describe the relationship
between feature scale and image capture position.

2. A localization method where each feature from a query image
frame is matched to a corresponding database “feature scale
tracklet”, and its scale is used to create a current position
estimate. We propose the combination of individual feature
estimates into a Probability Distribution Function (PDF).

3. A Bayes estimator for the system. With a linear motion model
we show that a Kalman filter is appropriate for position
estimation using the proposed visual localization method.

We evaluate our method with a real-world dataset and analyze
the database size and performance.

This paper is organized as follows: In Section 2 we give a brief
overview of related research. We describe our novel contributions
and proposed methodology in Section 3. The implementation of the
proposed system is detailed in Section 4. Experimental results are
presented in Section 5 followed by a discussion in Section 6, and the
paper is concluded in Section 7.

2. Related work

There are many ego-localization methods that use computer
vision to achieve position estimates. Here we present an overview of
some of the approaches that are related to the proposed method.

2.1. Local feature-based pose estimation methods

Many visual localization methods rely on local feature extraction
and description. Features are extracted from images and used to
build a visual database of the environment, typically using some kind
of invariant feature extraction method such as SIFT [8]. More modern

extraction and description methods include Speeded Up Robust
Features (SURF) [10], which offer some performance advantages by
using integral images, and binary descriptors such as Binary Robust
Independent Elementary Features (BRIEF) [11], Oriented FAST and
Rotated BRIEF (ORB) [12], Binary Robust Invariant Scalable Keypoints
(BRISK) [13] and Fast Retina Keypoints (FREAK) [14]. Binary
descriptors are typically used with a Features from Accelerated
Segment Test (FAST) [15] detection method, incorporating machine
learning into the corner detection process for determining good
feature locations. All feature-based methods depend on matching of
features in the database to features from a query image. Typically,
the database features are processed to create semi-dense scene
representations with 3D positions for each feature point [1,16].
Localization then takes place by calculating the geometry constraints
between a candidate set of database features and their matches
within the query image, in order to estimate the camera pose.
Pose estimates are localized within a world map using a pose
graph [17,18], or a Bayes estimator [19,20]. These methods have
much in common with the Simultaneous Localization And Mapping
(SLAM) [21] techniques used in robotics, with the key difference
being that the map construction stage is able to be performed off-line
in the vehicle localization case.

Local feature based methods suffer from several issues when
applied to the vehicle localization problem. The number of matched
features necessary for exact camera pose estimation is large, with a
recursive inlier selection process such as Random Sample Consensus
(RANSAC) [22] required for estimation of image-to-image geometry.
When too few consistent inlier feature matches are found, localiza-
tion fails. The calculation of the camera pose is a computationally
intensive process, and when the distance between the query and
database images is small, short baseline degeneracies [23] can occur.
In addition, the number of database features required leads to very
large databases which can be difficult to handle for real-world local-
ization, where the database for an entire region or city may have
to be stored or downloaded to the system. Pose estimation from
extracted features also requires accurately calibrated cameras, and
maintaining calibration for a camera in service on a consumer vehicle
is a potentially difficult task.

2.2. Path-following methods

For automotive localization, an exact camera pose estimate is
not necessarily required. Vehicles traveling along a road gener-
ally follow prescribed lanes, so accurate positioning longitudinally
along the lane is sufficient for many automated driving tasks. There
are many implementations of path-following methods using vision,
which generally provide more scalable performance at the cost of
lower precision when compared to pose estimation methods. Path-
following methods typically compute whole image discrepancies to
determine the most likely position of a query image along a stream
of database images. A whole-image discrepancy measure can be
formulated by using the Euclidean distance of dimension reduced
images [4], whole image descriptors constructed in a similar way
to SURF descriptors [5], or a low bit-rate image sequence instead of
single images [3]. Dynamic Time Warping (DTW) [24] can then be
used for image matching [3,4], or alternatively a Bayes estimator can
be employed [5,6] to generate position estimates.

Techniques that rely on whole image matching can be affected
by situations where images captured at the same location may
vary significantly, for example where dynamic traffic environments
create occlusions. There are also methods that use features for image
matching without direct pose estimation, offering advantages in
these situations — usually visible features can still be matched even
where a scene may be partially blocked by a passing truck, for
example. Image matching techniques that use feature points include
monitoring the epipole position of features matched between query

D. Wong et al. / Image and Vision Computing 68 (2017) 53–63 55

and database images [7]. When two images were captured from sim-
ilar locations, the epipole position of matched features moves toward
the outside of the image, and this can be used as a similarity mea-
sure within a DTW method. However, this system does still require
calculation of the essential matrix.

3. Contributed concepts

The method proposed in this paper aims to overcome some of
the issues of visual localization in the automotive environment.
While local feature points are used to offer robustness in real-
world traffic, we employ a path-following method which does not
involve camera pose estimation. Therefore camera calibration is not
important for localization, and localization can be performed even
when few feature matches are found. We use the scale of matched
features to interpolate the capture position of a query image along
a series of database features, with the addition of a Bayes filter to
improve localization results and error analysis. The system overview
of our method is shown in Fig. 1. The main novel contributions of this
paper can be explained as follows:

1. We combine corresponding features from consecutive
database frames into “feature scale tracklets” and determine
the parameters of the linear relationship between feature
scale and capture position using least squares regression.
Query image features are matched to database feature scale
tracklets, and their scales are used to calculate a capture
position estimate per tracklet, which are then combined into a
PDF. See Section 3.1.

2. The feature scale-based localization system is incorporated
into a Bayes estimator which allows filtering of the localization
results with a general motion model (see Section 3.2). The
use of a Bayes estimator also allows the inclusion of control
inputs and other measurement information such as odometry
if available. In Section 3.3 we describe how the Bayes estimator
is implemented using a Kalman filter.

Database

Database
images

Positioning
data

Localization
estimate

Query
image

Extract features

Match features
to tracklets

Per-tracklet
location estimates

Feature scale
tracklets

Extract features

D
at

ab
as

e
co

ns
tr

uc
tio

n
Lo

ca
liz

at
io

n

Feature scale to
capture position

regression

Kalman filter

Fig. 1. System flow of the proposed method.

3.1. Probability distribution function from tracklet estimates

In our previous work [25] we proposed the “feature scale tracklet”
concept. In this paper, we introduce a method for using scale and
capture position regression within tracklets to create a PDF of the
overall visual localization estimate for an input query frame. The key
concept of “feature scale tracklets” is that corresponding features
between images have a continuous scale, and in the case of a vehicle
moving linearly along a road, the feature scales increase with each
consecutive image. As the scale property is continuous, we can model
the relationship between scale and capture position with linear least
squares. This can be used to interpolate the capture position of a
query feature even between database capture locations.

3.1.1. Feature scale tracklet
Feature scale tracklets are created in the database construction

phase. SIFT feature points are extracted from each database frame
and are matched in consecutive frames. The resulting database
is a web of interconnected features, arranged into “feature scale
tracklets”, T ∈ T where T is the full set of database tracklets. A
feature tracklet T contains a list of M pre-matched database features
from sequential frames,

T = {g1, g2, . . . , gm, . . . , gM},
gm = {km, akm , um, sm, pm, lm}, (1)

with each m = 1, 2, . . . , M as the index along the tracklet. Here
km is the database image index which refers to the database image
containing the feature gm, and akm is the feature index within the
corresponding km. The descriptor of feature gm is denoted as um,
sm is the feature scale, and pm is the vector containing the feature
pixel positions. The longitudinal distance along the current database
segment is denoted lm, and defines the capture location of the
feature gm. While the capture locations are actually two-dimensional
co-ordinates, they are converted into one-dimensional values to
represent the length in meters along the current database segment.
Where the road splits and new segments form, the segments are
annotated appropriately. This notation is suitable because lateral
motion of the vehicle is constrained and of less interest than the
longitudinal position along the road. As we discuss in Section 3.1.2,
it also simplifies the modeling of position with feature scale.

An example of three feature scale tracklets are displayed over
four database frames in Fig. 2, with each tracklet in a different
color. In this diagram, the features from a query frame are shown
matched to database tracklets using the average descriptor of the
tracklet d(T) (see Section 4.1.1). The tracklet features are shown as
extracted from their parent database images km. The interpolation
of position from feature scale displayed in this diagram is the core
of the visual localization process, which is described in Section 3.1.3.
A set of regression coefficients H are provided by each tracklet
that is matched to a query feature, and these are used to perform
the interpolation based on the query feature’s scale. The individ-
ual position estimates are then combined and used within the
Bayes estimator, implemented in this case with a Kalman filter (see
Section 3.2).

3.1.2. Tracklet parametrization
Instead of performing a multivariate linear regression to build a

per-tracklet model of feature scale changes with capture position [9],
in this paper we perform a simple bivariate least squares regression
made possible by resolving the capture positions into a single
longitudinal distance along the current database segment. The
regression process allows the inclusion of scale information from all
corresponding feature points in the database, giving a more robust

56 D. Wong et al. / Image and Vision Computing 68 (2017) 53–63

1 2 3 4

d(T1)

d(T3)

d(T2)

y1= [1 s(q1)] Θ1

y2= [1 s(q2)] Θ2

y3= [1 s(q3)] Θ3

Query image

Database images

Kalman filter Localization
estimate

q1

q2

q3

Matching to
tracklets

Interpolation of position
from feature scale

Bayes
estimator

Fig. 2. Example query image and a string of database images displaying three example tracklets, each highlighted in a different color. The query image features, matched to the
tracklets through the average descriptors, are shown matched to the tracklet line based on the interpolated position along the tracklet, calculated from the query feature scale
and tracklet regression coefficients.

position estimate per tracklet and allowing filtering based on the
coefficient of determination.

If l is the vector of capture coordinates l1, l2, . . . , lM of M consec-
utively matched database features within the tracklet, and S is the
M × 2 design matrix containing the corresponding feature scale row
vectors sm = [1sm], then the coefficients for the linear regression H

can be calculated by ordinary least squares as

H = (STS)−1STl. (2)

The coefficients calculated for each tracklet form a parametriza-
tion which allows a direct capture position estimate when supplied
with a corresponding query feature’s scale.

3.1.3. Visual localization
When N features from a query image are matched to a subset

of database feature scale tracklets, each matched query feature qi
and corresponding Ti (where i = 1, 2, . . . , N) create an estimate of
the query capture position, yi, using the database coefficients deter-
mined for each tracklet in Eq. (2) and the query feature scale s(qi) as

yi = [1 s(qi)]Hi. (3)

The results of the individual estimates can be combined to form a
single position estimate by averaging their values as

y =
1
N

N∑
i=1

[1 s(qi)]Hi. (4)

The variance of the overall position estimate can be calculated as

s2
y =

1
N

N∑
i=1

(([1 s(qi)]Hi) − y)2. (5)

One of the contributions of the proposed method is the
recognition that the multiple estimates form a Gaussian distribution
which is suitable for inclusion in a Bayes estimator as a measurement
model. When combined, the query position estimates form the
following PDF:

P(y | x) =
1√

2ps2
y

exp

(
− (x − y)2

2s2
y

)
, (6)

where x is the capture position of the query image, y is the mean
of the individual observations yi, and s2

y is the variance of the
distribution.

3.2. Bayes estimator

This paper proposes the use of a Bayes estimator for tracklet-
based visual localization updates, based on the contribution of
Section 3.1.3. A Bayes estimator maximizes the a posteriori likelihood
of the state of a dynamic system. If a variety of information is
available about the system state, the Bayes estimator can combine
this information, together with the confidence of each state estimate,
to provide the most probable current state. For a moving vehicle,
the current position can be estimated by predicting the next state
from previous states using a motion model, and then updating the
predicted state using sensor measurements. The Bayes estimator
combines these two estimates by recursively predicting the PDFs
that describe the prediction estimate (state transition model) and
the measurement estimate (measurement model). The per-tracklet
position estimate provides a variance estimate and has a Gaussian
distribution (see Section 6) which makes a Bayes estimator a good
choice for including other measurements, control inputs, or a motion
model, in order to improve the overall localization performance. In
this section we formulate a standard Bayes estimator for our system.

The location of the vehicle along the current database segment at
the current time step k (with associated system time tk) is denoted
as xk and represents the state of the vehicle. Assuming a Markov
model, the probability distribution function of the vehicle position
xk is conditioned on the previous state xk−1 and the measurement
update of Eq. (4) provided by the visual localization system yk. The
state transition model is denoted P(xk | xk−1) and the measurement
model P(yk | xk). First, the transition model is used to predict the
location of the vehicle as

P(xk | yk−1) =
∫

P(xk | xk−1)P(xk−1 | yk−1)dxk−1, (7)

followed by the update state incorporating new measurements from
the visual localization system within the measurement model as

P(xk | yk) = aP(yk | xk)P(xk | yk−1), (8)

where a is a scalar to ensure that the result integrates to one. In
absence of any control input or odometry information, the transition
model is a simple constant velocity model described in Section 4.2.1.
The measurement model is a direct application of the query position
estimate PDF in Eq. (6). In this particular application, we assume
that our measurement and state transition models are linear, which
allows us to use a Kalman filter.

D. Wong et al. / Image and Vision Computing 68 (2017) 53–63 57

3.3. Kalman filtering

We are dealing with a unimodal system with a Gaussian state
transition model and measurement model, so we can use a Kalman
filter to avoid the difficult calculations of finding the maximum a
posteriori estimate from Eqs. (7) and (8). The Kalman prediction step
for this system is formulated as

x̂k = xk−1 + Dx + wk,

ŝ2
k = s2

k−1 + s2
wk

, (9)

where wk is the transition model noise, and Dx is the predicted
position change determined by the chosen motion model. We can
now use the measurement model to perform the update as

xk = x̂k + Kk(yk − x̂k),

s2
k = (1 − Kk)ŝ2

k , (10)

where Kk is the Kalman gain, calculated at each step as

Kk =
ŝ2

k

ŝ2
k + s2

y
. (11)

More implementation details of the proposed methods are pre-
sented below in Section 4. Fig. 2 summarizes how the contributed
processes perform localization using example tracklets.

4. Localization system implementation

Our method consists of two main stages — the database capture
and construction, and the localization of an input query image. The
database capture involves taking images from a vehicle-mounted
camera together with accurate localization information for every
capture position. The database is then constructed by extracting and
pre-matching local feature points in consecutive database frames.
Localization is performed by extracting features from a query image
and determining the position of the capture location based on scale
differences between these features and their corresponding database
feature matches. The database construction stage is described in
Section 4.1 and the localization stage in Section 4.2.

4.1. Database construction

The method proposed in this paper requires all localization routes
to be previously traversed and captured by a special data capture
vehicle. The data capture itself requires images from a single forward
facing camera, and accurate localization information for the vehicle
at each capture location. For the experiments presented in Section 5,
we used a Mobile Mapping System (MMS) to capture database image
streams. This system combines information from an IMU, odometry
sensors and a highly accurate GPS to provide accurate capture
locations for each image.

The series of database images are processed to create the visual
database, which actually only consists of labeled feature descriptor
information and discards the original images themselves. SIFT
feature points are extracted from each frame and are matched in
consecutive frames. This is an important step, as it affords the
following:

1. Features can be pruned from the database. Only features that
appear consistently in multiple consecutive database frames,
and have distinct descriptors, are kept for the final database.
For feature matching we use the Fast Library for Approximate
Nearest Neighbors (FLANN) matcher [26] for computational

efficiency and apply a Nearest Neighbor Distance Ratio (NNDR)
test to filter strong matches. Consistent matches are found
by tracking feature positions and projecting a feature search
area into the next database image that is consistent with the
previous feature motions for each current feature.

2. Consecutively matched features can be grouped together and
can share a single descriptor. Consecutive features matched
between database frames have very similar descriptors, as a
result of the matching process. In order to make the descriptor
more general for future matching to query image features, and
also to reduce the database size, the collection of matched
features in the database have their descriptors averaged to
create a single feature descriptor for the group of features. This
process is described in more detail in Section 4.1.1.

4.1.1. Feature scale tracklet construction
Database images have SIFT features extracted and tracklets are

constructed by matching features from consecutive frames and
grouping them as described in Section 3.1. For each tracklet, the
parameters that describe the relationship between capture position
and feature scale are then calculated as described in Section 3.1.2.
Additionally, the residual sum of squares, SSres of the set of feature
positions with respect to scale can be calculated as

SSres =
M∑

m=1

(lm − smH)
2. (12)

Similarly the total sum of squares SStot can be calculated as

SStot =
M∑

m=1

(
lm − l̄

)2
, (13)

where l̄ is the mean of the capture locations l1, l2, . . . , lM. A measure
of variability in the scale to position relationship for each tracklet is
the ratio of the residual sum of squares to the total sum of squares,
known as the coefficient of determination, R2. This can be can be
calculated as

R2 = 1 − SSres

SStot
. (14)

This ratio determines the closeness of the regression fit and can
be used to prune tracklets that display highly non-linear scale change
with position. The R2 value is between zero and one, with one
representing a perfect linear fit. Tracklets with an R2 over a chosen
threshold can be selected for inclusion in the database. We found
in our experiments that a value of 0.8 is an effective threshold for
filtering tracklets with mismatches.

We also propose the averaging of feature descriptors within each
tracklet to reduce the database size. Once the features have been
collected into “feature scale tracklets”, they make up a string of
matched features of increasing scale and varying image position.
However, they all have similar descriptors which led to them being
matched to each other. We can now assign a single descriptor d(T) as

d(T) =
1
M

M∑
m=1

um, (15)

which provides the average descriptor for each tracklet T. When
matching query image features to the features in the database,
candidate database tracklets are filtered by their capture location
range (l1 : lM) and their pixel locations, and then a query match can

58 D. Wong et al. / Image and Vision Computing 68 (2017) 53–63

be found from normal feature matches to the tracklet descriptors.
This is discussed further in Section 4.2.2.

4.2. Query image localization

Before a query image is localized relative to the database
tracklets, the system must retrieve the relevant sections of the
database. The database may be retrieved as a single file with
indexed tracklets, or for very large databases, split into many
files of a more manageable size for reading or streaming into the
localization system. The current vehicle position estimate is used to
select candidate tracklets from the database based on the capture
positions which they cover. Where no current position estimate
exists, initialization is performed (see Section 4.2.4). The visual
localization process, as described in Section 3.1.3, is then performed
within the Bayes estimator (described in Section 3.2). This requires
two parts; the state transition model for predicting the next state of
the vehicle, and the measurement model for updating the prediction
based on the visual localization measurements from the tracklet
estimates.

4.2.1. State transition model implementation
Assuming that no vehicle odometry information is available, we

employ a constant velocity state transition model. The new vehicle
position PDF is approximated to be a Gaussian with mean l and
variance sw. We calculate the previous distance covered between
query image frames, and adjust this distance for timing differences
in the next time step as

Dx =
(

xk−1 − xk−2

tk−1 − tk−2

)
(tk − tk−1). (16)

The calculated Dx is added to the last predicted vehicle location
such that l = xk−1 + Dx. This provides the following Gaussian
probability distribution function

P(xk | xk−1) =
1√

2ps2
w

exp

(
− (xk−1 − l)2

2s2
w

)
, (17)

which can be used in the transition model of Eq. (7), and in the case
of a Kalman filter, Eq. (9).

4.2.2. Measurement model implementation
The key component of this localization method is the visual

localization estimation. The candidate database tracklets are selected
based on the previous position xk−1. A tracklet is selected for
matching if the span of capture positions of the tracklet l1, l2, . . . , lM
intersect with the query region between xk−1 and xk−1 +qDx, where
q is a factor to determine the range of the database tracklets to
include for potential matching. Increasing the value of q increases the
number of tracklets included in the matching process, which can give
better position estimates at the expense of slower matching time. We
found in experimental testing that a q value of 2.0 usually encom-
passed all tracklets which would produce inlier position estimates.

The resulting set of tracklets are then matched to the query
image features by comparing the tracklet average descriptors to the
query image feature descriptors, using the same FLANN matching
technique [26] as used in the database construction stage. The set of
matches are pruned by removing matches where the query feature
scale s(q) is not within the range of the tracklet scales, s1, s2, . . . , sM.
The final set of matches are then used to complete the measurement
model described by Eqs. (8) and (10) in Section 3.2.

4.2.3. Kalman filter implementation
In practice, the visual position estimate update is much more

accurate than the estimate from the motion model. Even when the

visual position estimate has a high error (which usually occurs when
the number of query features matched to tracklets becomes very
low), the predicted variance may not be particularly high. Therefore
we weight the Kalman gain (Eq. (11)) such that the influence of the
motion model has little affect unless yk − x̂k exceeds a threshold, at
which point the measurement variance s2

y is weighted to increase
the filtering power of the state transition prediction. The output of
the Kalman filter, as presented in Eq. (10), is a position estimate xk at
each query image capture, with a measure of its confidence s2

k .

4.2.4. Initialization
When the vehicle is first localized, there is no information

available about the vehicle velocity for use in the Kalman filter.
To commence localization, coarse positioning information from GPS
is used to determine the general region, and tracklets covering
close-by locations are included for potential matches to the original
query frame features. The first few frames are localized using visual
estimates only. The approximate localization from GPS could be
replaced with a vision-only approach by sequence matching over
dimension reduced images [3]. This would remove the dependence
on GPS, but would potentially require a few minutes to capture a
sequence suitable for general position recognition. The increase in
database size would be small as only a few bits are required for
sequence template matching.

5. Experiments

To evaluate the localization performance of the proposed method,
a dataset captured at a driving school was used. The location allowed
various lane changes, traversal of intersections, and maneuvers to
be safely performed away from busy traffic. Fig. 3 shows the vehicle
paths. Examples of database images and their corresponding query
images are presented in Fig. 4.

A sophisticated data capture system was employed to provide
accurate ground-truth data in this dataset. This process is presented
in Section 5.1, and the methods used for evaluation are introduced
in Section 5.2. The database construction and localization results are
reported in Section 5.3. In Section 5.4 we evaluate the performance of
the Kalman filter by comparing with a particle filter on both straight
and curved road areas.

5.1. Vehicle configuration

The database and query image streams were captured using
a Mitsubishi Electric MMS-X320R MMS. This system incorporates
three 5 megapixel cameras, three laser scanners, GPS, and odometry
hardware. The three cameras are roof mounted, and only one
forward facing camera was used in the experiments. None of the
data collected from the laser scanners were used in this research.
Capture position estimation for database construction and ground-
truth is by a fusion of wheel encoder odometry, a high-accuracy
GPS unit and an IMU. This process is performed with proprietary
tools and gives a claimed root mean square localization error of
6 cm. The system provided an estimated average error of below
1 cm in the experiments that were conducted, aided by good
GPS satellite coverage. The MMS produces timestamped images
with corresponding capture position coordinates, with an image
capture rate of up to 10 Hz. The actual image rate depends on
synchronization with other hardware, but was at approximately
2 m intervals for most of our dataset. The camera uses a wide
angle lens (horizontal: 80◦, vertical: 64◦), and although the native
capture resolution of the MMS camera is 2400 × 2000 pixels, we
found that localization performance was maintained after down-
scaling to 600 × 500 pixels which improved computation speed. The
localization information supplied by the MMS for each image was
used for tracklet construction in the database streams, and provided

D. Wong et al. / Image and Vision Computing 68 (2017) 53–63 59

Fig. 3. The dataset location, showing the driving paths used.
Source: Satellite imagery: Google, ZENRIN.

a ground-truth for the query stream images to allow performance
evaluation.

5.2. Evaluated methods

To evaluate the performance of the proposed system, we
compared five localization methods. The experiments used a
standard desktop computer with a 3.5 GHz Intel i7 processor.
No GPU, multi-threading, or optimization was used to increase
performance, and the OpenCV C++ library [27] was used to
implement feature detectors and descriptor extractors. The tested
methods are summarized as follows:

1. Comparative method 1: WISURF. This method uses the
Whole-Image SURF (WISURF) descriptor [5] to perform image
matching. By comparing WISURF descriptors, this technique
selects the database image that minimizes the descriptor
distance. We implemented this method using DTW to compare
image streams. Localization is performed by applying the

localization information from the matched database image to
the query image directly.

2. Comparative method 2: Scale only. This method is based on
our previous work [28] and uses the average scale change
between matched features of individual images as a cost
measure within a DTW framework. Like the proposed method,
it uses matched feature scale comparisons; however, it does
not use the pre-matching and tracklet construction techniques
presented in this paper.

3. Comparative method 3: Tracklet-based image matching.
This method uses the pre-matched feature scale tracklets
presented in Section 3.1.1 and finds the closest database
image match per feature, but it does not incorporate any
form of interpolation or regression of feature scale between
database image positions. Localization is performed by using
the localization information from the predicted closest match
directly. This method is based on our previous work [25].

4. Proposed method 1: Proposed method without Kalman
filter. This method uses all techniques introduced in this

Database images

Query images

Fig. 4. Examples of query images from the dataset and their corresponding database images.

60 D. Wong et al. / Image and Vision Computing 68 (2017) 53–63

paper up to the Bayes estimator for position estimation
with a Kalman filter. The feature tracklet regression models
described in Section 3.1 and the descriptor averaging proposed
in Section 4.1.1 are employed to create per feature interpolated
position estimates. Localization is performed without a state
transition model and proceeds with the average of the visual
location estimates only.

5. Proposed method 2: Proposed method with Kalman filter.
This method uses all techniques introduced in this paper. It
expands on proposed method 1 to incorporate a Bayes estima-
tor in the form of a Kalman filter as described in Sections 3.2
and 3.3.

Note that in the experimental results that follow, feature
descriptor averaging was only applied to the proposed methods. It
can also be applied to comparative method 3, but we used standard
per-feature descriptors in comparative method 3 as per our previous
work [25]. We tested all feature tracklet methods with and without
descriptor averaging and found that despite consistently halving the
database size, localization accuracy was unaffected.

5.3. Localization results

The localization results of the proposed methods and comparative
methods were evaluated from the same database and query image
streams. A summary of the average localization errors of the tested
methods is presented in Table 1. The localization error rates of
the different methods are shown in Fig. 5. The proposed method 2
achieved an average localization error of 0.33 m, representing a 77%
improvement over the feature scale image matching method alone.
Compared to proposed method 1, a 21% improvement was observed
from the application of the Bayes filter for localization. The filter also
managed to reduce the localization variance and maximum error, as
the motion model provides smoothing of the localization results.

5.4. Estimator evaluation

The Kalman filter used in the proposed method is optimal
for linear problems with Gaussian noise, but a vehicle may not
strictly adhere to these properties. Especially where cornering
occurs, the linear system assumption may no longer be appropriate.
Therefore, the suitability of the Kalman estimator was evaluated by
implementing a particle filter for comparison. A particle filter is also
a Bayes estimator, but since it uses Monte Carlo random sampling for
measurement and transition, limited assumptions are made about
the underlying system model. This makes it an effective estimator
for highly non-linear systems, but it is much more computationally
expensive than a Kalman filter and may also suffer from divergence
due to the random sampling nature of state propagation. We
implemented a simple particle filter with Sampling Importance Re-
sampling (SIR) [29]. We used the same motion model as described in
Section 4.2.1, and experimented with various numbers of particles.

0%

20%

40%

60%

80%

100%

0 <1.0 <2.0 <3.0 <4.0 <5.0

P
er

ce
nt

ag
e

of
 r

es
ul

ts
Localization error (m)

Comparative 1: WISURF, image
matching only

Comparative 2: Feature scale, image
matching only

Comparative 3: Feature scale tracklets,
image matching only

Proposed 1: Feature scale tracklets,
scale regression

Proposed 2: Feature scale tracklets,
scale regression + Kalman filter

Fig. 5. Localization errors of the evaluated methods.

We found a few thousand particles were sufficient for consistent and
reproducible results, and used 4000 for the results presented here.

The comparison of the particle filter estimator and proposed
Kalman estimator is presented in Table 2 and Fig. 6. To determine
if the particle filter has advantages over the Kalman filter in areas
of the dataset where the vehicle maneuvers turns, the evaluation
results are split into areas where a corner was traversed and straight
sections of road. The results show that there was no significant
difference in localization accuracy when using a particle filter,
confirming that a Kalman filter is a suitable choice of estimator for
this system.

6. Discussion

Here we present a discussion about the performance of the
evaluated methods.

Apart from the comparative methods 1 and 2, all of the evaluated
methods used the feature scale tracklets, so the image matching
performance was the same for comparative method 2 and the
two proposed methods. While the use of feature scale tracklets
provided much better image matching results than comparative
method 2 which uses only single matched feature pairs for scale
comparisons, the differences between the three feature scale
tracklet-based methods are more subtle. Using regression within the

Table 1
Localization results of proposed and comparative methods.

Method Avg. error (m) Standard deviation (m) Max. error (m) Database size (kB/m)

Comparative method 1
WISURF descriptors, image matching only 3.71 1.68 4.61 1.42

Comparative method 2
Feature scale, image matching only 1.00 1.32 11.04 191.23

Comparative method 3
Feature scale tracklets, image matching only 0.61 0.46 2.66 80.96

Proposed method 1
Feature scale tracklets, scale regression 0.42 0.49 2.92 40.19

Proposed method 2
Feature scale tracklets, scale regression + Kalman filter 0.33 0.27 1.82 40.19

Bold values indicate the minimum value across the evaluated methods.

D. Wong et al. / Image and Vision Computing 68 (2017) 53–63 61

Table 2
Results of evaluation with different estimators.

Road type Estimator Avg. error (m) Standard
deviation (m)

Max. error (m)

Curved No filter 0.39 0.44 2.58
Particle filter 0.38 0.36 1.80
Kalman filter 0.35 0.31 1.82

Straight No filter 0.44 0.54 2.92
Particle filter 0.32 0.23 0.88
Kalman filter 0.31 0.23 0.96

Bold values indicate the minimum value across the evaluated methods.

database (proposed method 1) made a significant 31% improvement
in localization error over the best image matching only method
(comparative method 3). This illustrates the effectiveness of the use
of feature scale to interpolate position within a group of pre-matched
features from consecutive database frames. The large number of
estimates per query frame makes the visual localization system
ideally suited to inclusion in a Bayes estimator, as variance can be
easily calculated over the samples. A Kalman filter is a natural choice
for including a simple motion model in the localization estimate,
and also allows simple inclusion of control inputs and other sensor
localization estimates if available. The simple constant speed motion
model we applied smoothed the localization results enough to
enable a 21% improvement in localization accuracy. It also reduced
the variance of the localization error by 70%, as shown in Table 1
(where standard deviations are displayed instead of variance for unit
consistency. The corresponding drop in standard deviation is 45%).

The visual localization method proposed in this paper relies on
two assumptions. The linear regression performed on the tracklets
constructed as described in Section 3.1 assumes that feature scale
varies linearly with capture position. The strength of the linear fit

0%

20%

40%

60%

80%

100%

0 <0.5 <1 <1.5 <2

P
er

ce
nt

ag
e

of
 r

es
ul

ts
P

er
ce

nt
ag

e
of

 r
es

ul
ts

Localization error (m)

No filter

Particle filter

Kalman filter

(a) Curved road areas

0%

20%

40%

60%

80%

100%

0 <0.5 <1 <1.5 <2

Localization error (m)

No filter

Particle filter

Kalman filter

(b) Straight road areas

Fig. 6. Localization error rates of the proposed Kalman estimator, compared with a
particle filter and no filter on both (a) straight, and (b) curved sections of road.

can be evaluated using the coefficient of determination, R2 (Eq. (14)).
In our experiments, we found that most tracklets containing only
correct matches have an R2 very close to one, suggesting that the
linear fit is a good model for feature scale change with forward
motion. The regression lines of the example tracklets from Fig. 2
are shown in Fig. 7. The coefficients of each tracklet are displayed
in the linear fit equation for each line, together with the R2 value.
The coefficient of determination is an important filter measure in
the proposed method. By only using tracklets containing an R2 above
a certain threshold, we can effectively filter out features which do
not show stable linear scale increase with capture position, and this
also results in the removal of tracklets containing mis-matched fea-
tures. Unlike pose estimation methods, the proposed method can
generate a localization estimate even when only a few tracklets are
matched within the query image features; in fact, even one matched
tracklet will produce an estimate. The coefficient of determination is
therefore useful to select a smaller group of feature matches which
provide quality location estimates.

The second assumption is that the distribution of the per-tracklet
visual estimates is a zero-mean Gaussian. In order to confirm that the
noise distribution vk of yk is a zero-mean normal distribution such
that vk ∼ N

(
0,s2

yk

)
, we plotted the location estimate error frequen-

cies over many localization steps. The resulting distribution, shown
in Fig. 8, proves that the noise distribution is indeed closely Gaussian.

The Gaussian nature of the visual position estimate is the
reason that a Bayes estimator was chosen for localization. Some
of the related works [3,4,7] use a DTW framework for localization
estimation instead. These methods perform sequence matching
between the database and query image streams, minimizing a cost
function to determine the most likely location of the vehicle. The
proposed method is related in that it creates a position estimate
for each database feature by minimizing the feature scale difference
cost, relative to a regression line constructed for each database
tracklet. However, by pooling all of the individual feature estimates,
a measurement update ideally suited for a Bayes filter is created.
This allows easy inclusion of a motion model for smoothing and
improving the localization results. DTW is a suitable estimator when
interpolation between image frames is not used, but for localization
precision that exceeds the database image spacing some form or
regression is required.

If the system is assumed to be linear, a Kalman filter is an optimal
estimator. A non-linear estimator, such as an Unscented Kalman
(UKF) [30] or particle filter [29] can also be applied to this method
but adds complexity, with potentially limited benefit. The particle

l = 1.83s(g) + 161.60
R² = 0.94

l = 2.31s(g) + 213.08
R² = 0.98

l = 0.81s(g) + 244.03
R² = 0.96

248

250

252

254

256

0 10 20 30 40 50 60

C
ap

tu
re

 p
os

iti
on

 (
m

)

Feature scale

Fig. 7. The linear regression fit of the example tracklets in Fig. 2. The resulting
regression coefficients and R2 values are shown next to the regression line of each
tracklet.

62 D. Wong et al. / Image and Vision Computing 68 (2017) 53–63

0.00

0.05

0.10

0.15

-0.6 -0.4 -0.2 0 0.2 0.4 0.6

P
ro

ba
bi

lit
y

Error (m)

Experimental
localization
error histogram

Zero mean
normal
distribution

Fig. 8. The frequency histogram of the individual tracklet localization error vk

compared with the standard, zero-mean normal distribution with variance s2
z .

filter we tested provided no significant improvement in localization
accuracy, even in curved sections of road, showing that the linear
system assumption is appropriate for this application.

Another important consideration for automotive localization
system is the database size. Many visual systems that use fea-
tures have an impractically large visual database even after pre-
processing. Although our feature tracklet database is of respectable
compactness when compared to denser feature point methods [1,2],
the ability to share a single descriptor over consecutively matched
features makes a significant difference to the database size. The
descriptor component of the database is reduced by at least 60%,
which equates to an overall halving of the database size. The
resulting database fits approximately 25 m into 1 MB of storage.
While it would be possible to compress this database into a much
smaller file size — in this implementation, the descriptor values
are stored as raw text — even in its current format, downloading
the database in real time at 100 km/h would use less bandwidth
than streaming a standard 720p movie. This should be obtainable by
modern mobile data networks.

In the experiments presented in this paper, the camera type and
mounting system used for both query and database images was the
same. While it would be desirable to use a variety of configurations
to test robustness, this was not possible with the hardware available.
However, because this method uses feature scale only and does not
rely on accurate pixel position like pose estimation methods do, it
should be robust to alternative mounting positions and uncalibrated
cameras. Knowledge of the camera focal length should be sufficient
to allow localization using a different camera from the one used in
the database construction.

7. Conclusion

We proposed a method for visual ego-localization using
local feature points within a pre-constructed database. Arranging
matching features from consecutive database frames into tracklets
allows the creation of individual tracklet position estimators by
fitting feature scale to capture position with linear regression.
The per-feature localization estimates are approximately normally
distributed so give a convenient structure for inclusion in a Bayes
estimator. By adding a constant velocity motion model, a 21%
reduction in average localization error to 0.33 m and a 70% reduction
in variance were observed. Grouping features into tracklets also

allows averaging of descriptors within each tracklet, halving the size
of the database.

Future work includes the dynamic update of the database during
localization, so that localized query images can contribute to the
ongoing maintenance of the database. One drawback of using feature
points is their limited illumination invariance, so we would also like
to test the use of databases which vary depending on the lighting
conditions.

Acknowledgments

Parts of this research were supported by MEXT (17H00745),
Grant-in-Aid for Scientific Research.

References

[1] H. Lategahn, C. Stiller, Vision-only localization, IEEE Trans. Intell. Transp. Syst.
15 (3) (June 2014) 1246–1257.

[2] X. Qu, B. Soheilian, N. Paparoditis, Vehicle localization using mono-camera and
geo-referenced traffic signs, Proc. 2015 IEEE Intelligent Vehicles Symposium
(IV2011), Seoul, Korea, June 2015. pp. 605–610.

[3] M. Milford, Visual route recognition with a handful of bits, Proc. 2012 Robotics:
Science and Systems Conf., Sydney, Australia, July 2012. pp. 297–304.

[4] H. Uchiyama, D. Deguchi, T. Takahashi, I. Ide, H. Murase, Ego-localization using
streetscape image sequences from in-vehicle cameras, Proc. 2009 IEEE Intel-
ligent Vehicles Symposium (IV2009), Xi’an, China, June 2009. pp. 185–190.

[5] H. Badino, D.F. Huber, T. Kanade, Real-time topometric localization, Proc. 2012
IEEE Int. Conf. on Robotics and Automation (ICRA2012), St. Paul, MN, USA, May
2012. pp. 1635–1642.

[6] D. Xu, H. Badino, D.F. Huber, Topometric localization on a road network, Proc.
IEEE/RSJ 2014 Int. Conf. on Intelligent Robots and Systems (IROS2014), Chicago,
IL, USA, Sept. 2014. pp. 3448–3455.

[7] H. Kyutoku, T. Takahashi, Y. Mekada, I. Ide, H. Murase, On-road obstacle
detection by comparing present and past in-vehicle camera images, Proc. 12th
IAPR Conf. on Machine Vision Applications (MVA2011), Nara, Japan, June 2011.
pp. 357–360.

[8] D. Lowe, Distinctive image features from scale-invariant keypoints, Int. J.
Comput. Vis. 60 (2) (Nov. 2004) 91–110.

[9] D. Wong, D. Deguchi, I. Ide, H. Murase, Position interpolation using feature
point scale for decimeter visual localization, Proc. 2015 IEEE Int. Conf. on
Computer Vision (ICCV2015) Workshops, Santiago, Chile, Dec. 2015. pp. 1–8.

[10] H. Bay, A. Ess, T. Tuytelaars, L. Van Gool, Speeded-Up Robust Features (SURF),
Comput. Vis. Image Underst. 110 (3) (June 2008) 346–359.

[11] M. Calonder, V. Lepetit, C. Strecha, P. Fua, BRIEF: Binary Robust Independent
Elementary Features, Proc. 11th European Conf. on Computer Vision
(ECCV2010), Part IV, Crete, Greece, Lecture Notes on Computer Science, vol.
6314, Sept. 2010. pp. 778–792.

[12] E. Rublee, V. Rabaud, K. Konolige, G. Bradski, ORB: an efficient alternative to SIFT
or SURF, Proc. 2011 IEEE Int. Conf. on Computer Vision (ICCV2011), Barcelona,
Spain, Nov. 2011. pp. 2564–2571.

[13] S. Leutenegger, M. Chli, R.Y. Siegwart, BRISK: Binary Robust Invariant Scalable
Keypoints, Proc. 2011 IEEE Int. Conf. on Computer Vision (ICCV2011),
Barcelona, Spain, Nov. 2011. pp. 2548–2555.

[14] A. Alahi, R. Ortiz, P. Vandergheynst, FREAK: Fast Retina Keypoint, Proc.
2012 IEEE Conf. on Computer Vision and Pattern Recognition (CVPR2012),
Providence, RI, USA, June 2012. pp. 510–517.

[15] E. Rosten, T. Drummond, Machine learning for high-speed corner detection,
Proc. 9th European Conf. on Computer Vision (ECCV2006), Part I, Graz, Austria,
Lecture Notes on Computer Science, vol. 3951, May 2006. pp. 440–443.

[16] E. Mouragnon, M. Lhuillier, M. Dhome, F. Dekeyser, P. Sayd, Monocular vision
based SLAM for mobile robots, Proc. 18th IAPR Int. Conf. on Pattern Recognition
(ICPR2006), Hong Kong, China, vol. 3, Aug. 2006. pp. 1027–1031.

[17] T. Botterill, S. Mills, R.D. Green, Bag-of-words-driven, single-camera
simultaneous localization and mapping, J. Field Rob. 28 (2) (March 2011)
204–226.

[18] G. Grisetti, R. Kümmerle, C. Stachniss, W. Burgard, A tutorial on graph-based
SLAM, IEEE Intell. Transp. Syst. Mag. 2 (4) (Winter 2010) 31–43.

[19] M. Cummins, P. Newman, Appearance-only SLAM at large scale with FAB-MAP
2.0, Int. J. Rob. Res. 30 (9) (Aug. 2011) 1–24.

[20] G. Sibley, C. Mei, I. Reid, P. Newman, Vast-scale outdoor navigation using
adaptive relative bundle adjustment, Int. J. Rob. Res. 34 (14) (July 2010)
1688–1710.

[21] H.F. Durrant-Whyte, T. Bailey, Simultaneous localization and mapping: part I,
IEEE Robot. Autom. Mag. 13 (2) (June 2006) 99–110.

[22] M.A. Fischler, R.C. Bolles, Random sample consensus: a paradigm for model
fitting with applications to image analysis and automated cartography, Comm.
ACM 24 (6) (June 1981) 381–395.

[23] G. López-Nicolás, C. Sagüés, J.J. Guerrero, Parking with the essential matrix
without short baseline degeneracies, Proc. 2009 IEEE Int. Conf. on Robotics and
Automation (ICRA2009), Kobe, Japan, May 2009. pp. 1098–1103.

http://refhub.elsevier.com/S0262-8856(17)30112-9/rf0005
http://refhub.elsevier.com/S0262-8856(17)30112-9/rf0010
http://refhub.elsevier.com/S0262-8856(17)30112-9/rf0015
http://refhub.elsevier.com/S0262-8856(17)30112-9/rf0020
http://refhub.elsevier.com/S0262-8856(17)30112-9/rf0025
http://refhub.elsevier.com/S0262-8856(17)30112-9/rf0030
http://refhub.elsevier.com/S0262-8856(17)30112-9/rf0035
http://refhub.elsevier.com/S0262-8856(17)30112-9/rf0040
http://refhub.elsevier.com/S0262-8856(17)30112-9/rf0045
http://refhub.elsevier.com/S0262-8856(17)30112-9/rf0050
http://refhub.elsevier.com/S0262-8856(17)30112-9/rf0055
http://refhub.elsevier.com/S0262-8856(17)30112-9/rf0060
http://refhub.elsevier.com/S0262-8856(17)30112-9/rf0065
http://refhub.elsevier.com/S0262-8856(17)30112-9/rf0070
http://refhub.elsevier.com/S0262-8856(17)30112-9/rf0075
http://refhub.elsevier.com/S0262-8856(17)30112-9/rf0080
http://refhub.elsevier.com/S0262-8856(17)30112-9/rf0085
http://refhub.elsevier.com/S0262-8856(17)30112-9/rf0090
http://refhub.elsevier.com/S0262-8856(17)30112-9/rf0095
http://refhub.elsevier.com/S0262-8856(17)30112-9/rf0100
http://refhub.elsevier.com/S0262-8856(17)30112-9/rf0105
http://refhub.elsevier.com/S0262-8856(17)30112-9/rf0110
http://refhub.elsevier.com/S0262-8856(17)30112-9/rf0115

D. Wong et al. / Image and Vision Computing 68 (2017) 53–63 63

[24] M. Muller, Dynamic time warping, Information Retrieval for Music and Motion,
Springer, Berlin Heidelberg, Sept. 2007, pp. 69–84.

[25] D. Wong, D. Deguchi, I. Ide, H. Murase, Single camera vehicle localization
using feature scale tracklets, IEICE Trans. Fundam. Electron. Commun. Comput.
Sci. E100-A (2) (February 2017) 702–713.

[26] M. Muja, D.G. Lowe, Fast approximate nearest neighbors with automatic
algorithm configuration, Proc. 4th Int. Conf. on Computer Vision Theory and
Applications (VISAPP2009), Lisboa, Portugal, vol. 1, Feb. 2009. pp. 331–340.

[27] G. Bradski, The OpenCV Library, Dr. Dobb’s J. Softw. Tools 25 (11) (2000) 120–
126. http://opencv.org/.

[28] D. Wong, D. Deguchi, I. Ide, H. Murase, Vision-based vehicle localization using
a visual street map with embedded SURF scale, Computer Vision — ECCV
2014 Workshops Proc., Part I, Zurich, Switzerland, Lecture Notes on Computer
Science, vol. 8925, Sept. 2014. pp. 167–179.

[29] L. Marchetti, G. Grisetti, L. Iocchi, A comparative analysis of particle filter based
localization methods, RoboCup 2006: Robot Soccer World Cup X, Bremen,
Germany, Lecture Notes on Computer Science, vol. 4434, Springer, Berlin
Heidelberg, June 2006, pp. 442–449.

[30] E.A. Wan, R.V.D. Merwe, The unscented Kalman filter for nonlinear estimation,
Proc. IEEE 2000 Adaptive Systems for Signal Processing, Communications, and
Control Symposium (AS-SPCC2000), Oct. 2000. pp. 153–158.

http://refhub.elsevier.com/S0262-8856(17)30112-9/rf0120
http://refhub.elsevier.com/S0262-8856(17)30112-9/rf0125
http://refhub.elsevier.com/S0262-8856(17)30112-9/rf0130
http://opencv.org/
http://refhub.elsevier.com/S0262-8856(17)30112-9/rf0140
http://refhub.elsevier.com/S0262-8856(17)30112-9/rf0145
http://refhub.elsevier.com/S0262-8856(17)30112-9/rf0150

	Regression of feature scale tracklets for decimeter visual localization
	1. Introduction
	2. Related work
	2.1. Local feature-based pose estimation methods
	2.2. Path-following methods

	3. Contributed concepts
	3.1. Probability distribution function from tracklet estimates
	3.1.1. Feature scale tracklet
	3.1.2. Tracklet parametrization
	3.1.3. Visual localization

	3.2. Bayes estimator
	3.3. Kalman filtering

	4. Localization system implementation
	4.1. Database construction
	4.1.1. Feature scale tracklet construction

	4.2. Query image localization
	4.2.1. State transition model implementation
	4.2.2. Measurement model implementation
	4.2.3. Kalman filter implementation
	4.2.4. Initialization

	5. Experiments
	5.1. Vehicle configuration
	5.2. Evaluated methods
	5.3. Localization results
	5.4. Estimator evaluation

	6. Discussion
	7. Conclusion
	Acknowledgments
	References

