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PAPER
Single Camera Vehicle Localization Using Feature Scale Tracklets

David WONG†a), Nonmember, Daisuke DEGUCHI††b), Member, Ichiro IDE†c), Senior Member,
and Hiroshi MURASE†d), Fellow

SUMMARY Advances in intelligent vehicle systems have led to mod-
ern automobiles being able to aid drivers with tasks such as lane following
and automatic braking. Such automated driving tasks increasingly require
reliable ego-localization. Although there is a large number of sensors that
can be employed for this purpose, the use of a single camera still remains
one of the most appealing, but also one of the most challenging. GPS lo-
calization in urban environments may not be reliable enough for automated
driving systems, and various combinations of range sensors and inertial
navigation systems are often too complex and expensive for a consumer
setup. Therefore accurate localization with a single camera is a desirable
goal. In this paper we propose a method for vehicle localization using im-
ages captured from a single vehicle-mounted camera and a pre-constructed
database. Image feature points are extracted, but the calculation of camera
poses is not required — instead we make use of the feature points’ scale.
For image feature-based localization methods, matching of many features
against candidate database images is time consuming, and database sizes
can become large. Therefore, here we propose a method that constructs
a database with pre-matched features of known good scale stability. This
limits the number of unused and incorrectly matched features, and allows
recording of the database scales into “tracklets”. These “Feature scale
tracklets” are used for fast image match voting based on scale compari-
son with corresponding query image features. This process reduces the
number of image-to-image matching iterations that need to be performed
while improving the localization stability. We also present an analysis of
the system performance using a dataset with high accuracy ground truth.
We demonstrate robust vehicle positioning even in challenging lane change
and real traffic situations.
key words: ego-localization, monocular vision, feature scale

1. Introduction

The problem of ego-localization relative to a known map is
central to vehicle navigation systems. Reliable and accu-
rate ego-localization is important not only for in-car naviga-
tion systems, but it is also a key component of many of the
emerging vehicle technologies that automate driving tasks.
Global Positioning Systems (GPS) are standard equipment
on many modern automobiles, but while consumer models
are effective when the vehicle has a clear view of the sky,
localization performance is reduced in typical urban envi-
ronments. Tall buildings, tunnels, trees and other structures
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common in city driving prevent a direct signal path to satel-
lites and cause average errors of more than 5 m or complete
failure to localize.

GPS inaccuracies can be somewhat overcome by aug-
menting with other sensors, such as an Inertial Measurement
Unit (IMU), range sensors, and/or odometry. However,
computer vision is already employed on some newer vehi-
cles for use in lane detection, parking, and automated driv-
ing tasks. Therefore, cameras already in place in production
vehicles could ideally be re-purposed for ego-localization.

Computer vision for localization is a very active area
of research for automotive and robotics applications. There
are many proposed methods, usually based around self-
localization in an unknown environment or localization rel-
ative to a pre-constructed map. The availability of a pre-
constructed map, or database, is appropriate for automotive
localization. Visual methods for map-relative localization
are usually one of two types; metric localization with map-
relative updates [1], or a simpler system using direct match-
ing of input images to pre-captured database images [2], [3].
While the latter approach offers potentially better scalabil-
ity and reduced complexity for real-time operation, accuracy
when lateral motion occurs — for example, when the vehi-
cle changes lanes — can be problematic. Localization with
a single sensor is a challenging task, so most visual systems
use multiple cameras or include supporting sensors.

While feature-based methods offer many advantages
in regards to occlusion and lane change situations, visual
odometry-based methods [1] require calculation of camera
poses and the essential matrix which is computationally in-
tensive and usually requires iterative processes such as Ran-
dom Sample Consensus (RANSAC) [4] and bundle adjust-
ment. As many features are used in these processes, feature
matching is a performance bottleneck. In addition, calcula-
tion of the essential matrix when the distance between the
query and database images is small, can cause short base-
line degeneracies [5]. Our previous work [6], [7] uses scale
invariant features and compares the scale of corresponding
query and database image features to determine a database
image match. If two images have the same viewing direc-
tion, their corresponding feature points will have a similar
scale when the capture positions were spatially close. As
the distance between the images increases, the difference
in corresponding feature scales also increase. Finding the
minimum average feature scale difference allows feature-
based image matching for localization without essential ma-
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trix calculation.
In this paper, an assumption of forward vehicle mo-

tion allows us to continue with the comparison of query im-
age and database image feature scales, and further utilize
database information to improve image matching accuracy
and performance. The proposed method consists of the fol-
lowing contributions:

1. We make use of the known forward motion of the vehi-
cle. We can monitor the scales of matched features and
only retain those that have stable scale increase consis-
tent with forward motion, which reduces the number
of features in the database while maintaining the best
features for localization. Fewer features make for a
smaller database size and faster feature matching in lo-
calization. By keeping track of the feature matches and
scales in the database, we create “feature scale track-
lets” for rapid scale comparisons.

2. A per-feature, look-ahead database match voting
method in the localization phase for determining the
closest database image to the current query image. This
process uses the “feature scale tracklets” to allow more
(fast) feature scale comparisons in the closest database
image calculation, while reducing the number of (slow)
image-to-image matching steps.

We use a dataset with accurate ground truth to eval-
uate the localization results of the proposed method. We
confirm the stability and accuracy of the method even when
lane changes occur. For evaluation, we compare the results
to those obtained using an effective image descriptor for im-
age matching [2].

This paper is organized as follows: In Sect. 2 we give
a brief overview of related research. We describe our novel
contributions in Sect. 3 and the overall localization process
in Sect. 4. Experimental results are presented in Sect. 5, fol-
lowed by a discussion in Sect. 6 and the paper is concluded
in Sect. 7.

2. Related Work

While there are a large number of visual localization meth-
ods, we will briefly summarize some of those related to our
approach. The majority of automotive and robotic localiza-
tion systems extract repeatable feature points within images,
such as the Scale Invariant Feature Transform (SIFT) [8] or
the newer Speeded Up Robust Features (SURF) [9]. Re-
cently there have been an increasing number of feature point
detection and description techniques, each with various ad-
vantages in processing efficiency or robustness. Popular
recent methods use a binary descriptor for fast detection
and description. BRIEF [10], ORB [11], BRISK [12] and
FREAK [13] are some modern binary descriptors, typically
extracted at feature points detected by the FAST [14] de-
tector, which incorporates machine learning into the corner
detection process for determining good feature locations.

In robotics, Simultaneous Localization and Mapping
(SLAM) [15] creates a map as self-localization proceeds.

Many methods use feature-based camera pose estima-
tion [16]–[18]. The feature points are matched between
captured images and those stored in the map or database,
and relative localization is performed using structure-from-
motion techniques. The calculation of scene geometry and
camera pose from feature points can also provide some high
accuracy localization results in the automotive setting [1]
using a pre-constructed feature map. Methods that calculate
camera pose usually require many feature points within a
RANSAC [4] framework to select an inlier feature set. This
in turn can lead to scalability issues when the database cov-
ers a large distance as many features need to be stored per
image frame. They can also be computationally intensive,
often barely running in real-time.

Dynamic Time Warping (DTW) [19] is a process used
to remove temporal differences between sequences. In the
case of automotive visual localization, it can be applied to
two image streams — a database image stream, and a query
input image stream. By minimizing an image match cost,
query and database streams can be spatially aligned, there-
fore allowing query images to be localized from known
database capture locations. This process has been applied
using various image similarity measures, including Eu-
clidean distance of dimension reduced images [3] or inten-
sity difference in down-sampled image streams [20]. These
methods scale well to large databases and are computation-
ally less complex than those that calculate camera pose from
features.

In addition to Dynamic Time Warping, probabilistic
approaches have been used to match database image loca-
tions to query images [2], [21], [22], employing a Bayesian
network to determine the most likely current position based
on image similarity. Incremental map construction has been
included to make a SLAM-like system [22] which is very
scalable to large maps, with a high recall rate but low preci-
sion. Badino et al. [2] proposed the use of a whole-image
feature descriptor based on the SURF descriptor, named
WISURF — Whole Image SURF [9], [23]. This descriptor
can be used with either DTW or a Bayesian system, and real-
time localization performance of high accuracy was demon-
strated on large datasets when using two cameras. This
method has a low complexity and database size while offer-
ing good localization performance. We used the WISURF
descriptor to implement a baseline method for evaluation.
Using WISURF descriptors results in one descriptor per im-
age, allowing fast image comparisons over a large number
of candidate database matches. However, as we show in
Sect. 5, using many feature descriptors per image together
with the proposed method provides more accurate localiza-
tion and added robustness in challenging image matching
situations such as occlusions and lane changes.

The DTW and probabilistic methods mentioned above
scale to large sized maps and are less complex than feature-
based approaches, which require calculation of scene geom-
etry between views. However, they rely on whole image
similarity, so tend to perform poorly when the query images
and database images differ significantly in structure, for ex-
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ample, in the case of large occlusions and lane changes.

3. Our Contributions

3.1 Pre-Matched Database

Image databases for visual localization typically store de-
scriptor representations for each image [2], [3], and feature-
based methods will contain a set of many feature descrip-
tors per database image [6], [24]. Since feature-based local-
ization methods perform feature matching between database
and localization images, a carefully constructed database of
known inliers is important for better matching performance.

In the construction of the database, we know that the
vehicle is constantly moving forward. We therefore know
that the scale of features will increase as they are observed
in consecutive database images. By making use of this and
matching features between database frames, two things can
be achieved in database construction:

1. Pruning of feature matches where feature scale does
not increase significantly with forward motion. Since
we compare the scale of matched features for localiza-
tion of a query image, using only features which exhibit
a linear scale change with changing capture distance re-
duces the number of features which make an incorrect
contribution to location prediction.

2. As each feature in the database is matched to cor-
responding features in adjacent frames, matching of
query features to database features can be performed
just once instead of many times over several database
images. The scales of the corresponding database fea-
tures can also be quickly looked up, allowing a query
feature’s scale to be compared to a stream of matching
database feature scales. We call the string of corre-
sponding database feature scales a “feature scale track-
let”.

The resulting database is a web of interconnected features,
arranged into “feature scale tracklets”, T ∈ T whereT is the
full set of database tracklets. A feature tracklet T consists
of a list of M pre-matched database features from sequential
frames:

T = {gλ1 , gλ2 , ..., gλM }, (1)

with each λm (with m = 1, 2, ...,M as the index along the
tracklet) being the database image index which refers to the
database image containing the feature g.

3.2 Per-Feature Image Match Voting

Localization methods that use image similarity to predict lo-
cation require the matching of a query image to a number of
database image candidates, often using probabilistic meth-
ods [2], [21] or DTW [3], [7], [24]. To find the database
image that matches the query image, typically a match cost
is minimized and the query image is tested against many
sequential database images. This is normally the most

time consuming part of the localization process, particularly
for feature-based methods, as feature matching is relatively
slow.

In this paper, we introduce a novel method for rapid
convergence on the correct database match without the need
to calculate the match cost for all local database images. Our
proposed method allows individual features to vote on the
most likely database match, and convergence usually occurs
within two or three image match tests.

In our per-feature look-ahead image matching method,
features extracted from a query image are matched to the
features from a candidate database image λ. The feature
matching process results in N matched query image fea-
tures, with each feature fi (i = 1, 2, ...,N) being mapped to
a feature tracklet Tt ∈ T which contains the corresponding
database feature gλ, as follows:

fi 7→ Tt where min
t
γ( fi, gλ ∈ Tt). (2)

Here the subscript t of Tt refers to the tracklet index within
the database, and γ(.) is the feature matching function which
finds the corresponding database feature by searching for the
minimum descriptor distance, which we present in more de-
tail in Sect. 4.1.2. We can now identify the feature within
the tracklet that is closest in scale to the current query im-
age feature fi, and therefore find the database image match
predicted by the feature:

λ( fi) = arg min
λ

|s( fi) − s(gλ ∈ Tt)|, (3)

where the function s(.) returns the scale of a feature. Now all
of the matched features can individually estimate and vote
on which database image provides a match, with the most
voted database image being selected as the image match as
follows:

λmatch = arg max
k

N∑
i=1

v(k, λ( fi)), (4)

v(k, λ( fi)) =

1 if λ( fi) = k
0 otherwise

, (5)

where λmatch is the database index of the image match.
An overview of the per-feature image match voting

method is presented in Fig. 1, and the scale comparison pro-
cess for an individual feature is illustrated in Fig. 2. By com-
paring query feature scale within the “feature scale track-
lets”, we replace the many expensive feature descriptor
matching steps with a series of feature scale comparisons.
Particularly if the candidate database image is actually quite
far from the true match, there may be some variations in the
voted match. In any case, the resulting database image is
selected as the next candidate and the process is repeated.
The process terminates when the current candidate database
image results in a majority of votes for itself. When this
happens, the database image is selected as a match.
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Fig. 1 An overview of the per-feature voting process for selecting the
closest database match. Each feature extracted from the query image is
matched to a database tracklet feature, and supplies a vote for a candidate
database image. The most voted database image is selected as a match.

Fig. 2 Simplified diagram of the per-feature image match voting. Only
one feature is shown here for clarity. The scale of the feature in the query
image is scanned through the corresponding database feature’s “feature
scale tracklet”, shown here in red. It can then vote on the predicted database
image match, in this case image λ3. The database image with the highest
number of votes over all the features is then progressed to as the next can-
didate.

4. Localization Procedure

In this section, we describe how the proposed method
achieves localization of input query image. The localization
phase starts with feature extraction and matching to the fea-
tures of the first candidate database image frame, and then
comparison of feature scales within the database is used to
converge on the closest database image match. An overview
of the system process can be seen in Fig. 3. The process
for the database construction phase is described below in
Sect. 4.1. The database of the proposed image matching pro-
cess described above in Sect. 3.2 depends on the use of ap-
propriate feature points as explained in Sect. 4.1.1, and also
accurate feature matching which is described in Sect. 4.1.2.
This is followed by a more detailed explanation of the local-
ization phase in Sect. 4.2.

Fig. 3 Overview of the proposed system processes.

4.1 Database Capture and Construction Phase

Our system requires an image database with accurate cap-
ture locations, e.g. provided by a high quality GPS or map-
ping system. In this research, images were captured from a
vehicle-mounted mapping system, incorporating high accu-
racy GPS, IMU, and odometry sensors for collecting local-
ization data. All vehicle routes to be localized must be pre-
viously traversed by the database capture vehicle — while
this appears a prohibitive step for large scale localization,
datasets such as Google Street View have demonstrated that
it is a possible task.

One consideration in the database capture process is
the frame rate of image capture. The localization position
of a query image comes directly from the closest database
match, so a high frame rate is preferable to create a database
with high spatial resolution. However, at very fast frame
rates, image discrepancy between adjacent database im-
ages becomes very small and all image matching methods
will struggle to distinguish between them. In addition, a
small spacing between database frames leads to a very large
database and slower localization. In this research, we found
that an approximately 2 m database image spacing returned
close to 1 m average localization error, with modest database
size. More information on experimental setup and results is
presented in Sect. 5.
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4.1.1 Feature Point Extraction

Once the images have been captured, feature points are
extracted from all of the frames. There is an increasing
number of scale and illumination invariant feature detectors
and descriptors, with potentially the two most frequently
used methods being the original SIFT method [8] and its
faster variant SURF [9]. The feature detector determines
the feature locations and scales, whereas the descriptor de-
scribes the feature region such that it can be matched to
corresponding features in other images. In our previous
research [6], [7], we used the SURF detector and descrip-
tor. However the work presented here uses the SIFT fea-
ture detector. We found that the feature scales extracted
with SIFT keypoints were more consistent than those ex-
tracted by SURF. We use SIFT for feature detection and
SURF for descriptors. SURF feature descriptors gave bet-
ter matching performance at lower computational cost. In
general, the proposed method is applicable to any feature
extraction and description method with a scale property, so
would work with more modern multi-scale feature detection
methods such as FAST [14] and binary descriptors such as
BRIEF [10], ORB [11], BRISK [12], and FREAK [13].

4.1.2 Feature Point Matching

The next step is to match extracted feature points between
sequential database images. Since the proposed localization
method does not calculate image geometry, typical inlier se-
lection schemes for feature matching using RANSAC [4]
cannot be used. However, in road environments, there are
certain constraints that can be applied to improve the rate of
inlier matches. We assume that the camera is forward fac-
ing, and that the primary camera motion is in the direction
that the camera is pointing. Together with the assumption
that camera height is known, we can restrict the search area
for feature matches.

In addition to the scale change pruning outlined in
Sect. 3.1, we apply a weighted match cost. This applies
scale and feature response weights to help identify the best
potential matches. The best feature match for feature f is
calculated by finding the feature g in the next database im-
age containing the pre-pruned set of features which mini-
mizes the following equation:

γ( f , g) = ws|s( f ) − s(g)| + wr |r( f ) − r(g)|
+wd(SSD( f , g)),

(6)

where function s(.) returns the feature scale, function r(.)
the feature response, and SSD( f , g) is the standard sum of
squared differences of the feature descriptors. The weights
ws, wd, wr are adjusted to give a strong inlier set while main-
taining a high number of matched features. Finally the best
matches are selected by dropping any matches which have
a descriptor distance of more than twice the minimum de-
scriptor distance within the set of matches. All un-matched

features are discarded from the database.

4.2 Localization Phase

In the localization step, first a likely database image match
is selected as a candidate based on the last match. In a real-
world system, this could be initialized either with a normal
consumer GPS or by using a visual search within a database
to find a likely region to start in, similar to the method pro-
posed by Cummins and Newman [22]. SIFT features are
extracted from the query image, and then matched to the
recorded features of the candidate database image. The
same selective weighted feature matching given by Eq. (6)
is used, with the exception of the restriction on increasing
feature scale, since we do not know if the query image is
before or beyond the first candidate database image.

The database image match is then predicted using the
proposed per-feature image match voting using “feature
scale tracklets” as described in Eqs. (2) to (5) of Sect. 3.2.
Once the database match is selected, the localization infor-
mation associated with it is applied directly to the query im-
age. When we move on to the next query image, the next
database image is used as the first candidate image. This
method has merit in that it does not require a motion model
or velocity estimates to proceed with localization. While we
assume that the vehicle is moving forward in our method,
it is not difficult to modify the method to accomodate back-
ward motion. We also do not consider localization at junc-
tions in this paper. However, we provide a discussion on
possible implementation for junctions and backward motion
in Sect. 6.1.2.

5. Experiment

To evaluate the localization performance of the proposed
method, a dataset captured at a driving school was used. The
location allowed various lane changes, traversal of intersec-
tions and maneuvers to be safely performed away from busy
traffic. A sophisticated data capture system was employed
to provide accurate ground truth data in this dataset. This
process is presented in Sect. 5.1, and feature matching pa-
rameters discussed in Sect. 5.2. In Sect. 5.3, we describe the
baseline methods used throughout these experiments, and
present the results in Sect. 5.4. In addition, the proposed
method was also tested in real traffic environments. For this
data, accurate localization ground truth was not available,
but the system was evaluated by looking at the image match-
ing performance, presented in Sect. 5.5.

5.1 Vehicle Configuration

The database and query image streams were captured using
a Mitsubishi Electric MMS-X320R Mobile Mapping Sys-
tem (MMS). This system incorporates three 5 megapixel
cameras, three LASER scanners, GPS, and odometry hard-
ware. Only one forward facing camera was used in these
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Fig. 4 The dataset location, showing the driving paths used. Satellite
imagery: Google, ZENRIN.

experiments. The MMS provides a claimed localization er-
ror of less than 6 cm (RMS), and the system provided an
estimated average error of below 1 cm in the experiments
that were conducted. Image capture is at approximately 2 m
intervals.

Several database sequences were captured around the
driving school, always using the left-hand lane. Query im-
age streams used a mixture of the left-hand lane and the
right-hand lane where multiple lanes were available. Fig-
ure 4 shows the vehicle paths.

5.2 System Parametrization

In the database construction and localization feature match-
ing, the weights ws, wd, wr from Eq. (6) were selected by vi-
sually checking feature correspondences, and choosing val-
ues that minimized incorrect matches. The scale difference
of correct matches varies depending on feature size, so a rel-
atively small ws value of approximately one tenth of wd and
wr (which were approximately equal) was found to be ef-
fective. This configuration prioritizes the SSD of feature
descriptors for determining the best feature match. The
weights were normalized to sum to one, resulting in a ws
value of 0.0476, with both wd and wr values set to 0.476.

5.3 Baseline Methods

To evaluate the performance of the proposed system, we im-
plemented three baseline methods.

1. Feature Scale DTW. This method is based on our pre-
vious work [7] and uses the average scale difference be-
tween matched features of individual images as a cost
measure within a DTW framework. The image match
cost can be considered as the averaged costs between
matched features, as in Eq. (6) but using only the scale
difference and setting wd and wr to zero. Like the pro-
posed method, it uses matched feature scale compar-
isons; however, it does not use the pre-matching and
tracklet construction techniques presented in this pa-
per.

2. Feature Match Cost DTW. This method uses the same

DTW framework as Feature Scale DTW, but instead
of using average scale change as a cost measure for
image matching, it uses the feature match cost from
Eq. (6), averaged over all feature matches to a can-
didate database image. It includes scale difference,
response difference, and descriptor distance. The re-
sults for Feature Match Cost DTW as shown here are
using the weights ws, wd, wr as optimized for feature
matching (see Sect. 5.2). Again, this method omits the
proposed pre-matching and tracklet construction tech-
niques.

3. WISURF-DTW. We implemented a modified version
of WISURF [2] for image matching. The WISURF
method creates a single SURF descriptor for each im-
age, and chooses a database image match based on
descriptor distance. Instead of using a Bayesian fil-
ter [2], we performed image matching using WISURF
image descriptor distance and DTW to remove the de-
pendence on motion estimation for localization. The
experimental results, when the same lane was traversed
in both passes, gave similar results to those presented
in [21] in downtown areas, which is impressive, con-
sidering only one camera was used in our testing.

5.4 Localization Performance

Databases were constructed for the proposed and baseline
methods, and localization performed through sections of the
dataset. The results focus on two areas; standard local-
ization when the query images were captured in the same
lane as the database images, and the lane change condi-
tion where the query images were captured in the right-hand
lane. Some examples of the resulting image matching are
shown in Fig. 5.

The localization process was performed using a stan-
dard desktop computer, with a 3.5 GHz Intel i7 proces-
sor and 8 GB of RAM. The OpenCV libraries were used
for feature detection and descriptor extraction. Without
any GPU implementation, multi-threading nor optimization
of any kind, localization was performed at approximately
15 Hz. At 100 km/h, a 14 fps image capture rate is required
to achieve the 2 m image spacing used in these experiments.
Therefore 15 Hz localization would be possible at up to
100 km/h without increasing the image spacing beyond 2 m.

Localization accuracy for all methods was evaluated
using the MMS localization data. For the query image
stream, localization information provided the ground truth.
One way to evaluate the effectiveness of the system is
to regard image matching performance — how reliably the
method can find the spatially closest database image given
a query image. Figure 6(a) shows the image matching per-
formance of the proposed method together with each of the
baseline methods as described in Sect. 5.3, where database
and localization streams were in the same lane. Figure 6(b)
shows the image matching performance on a short sequence
where the query images were captured in the right-hand
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Fig. 5 Example image matching results. The top two rows show image
matching in the same lane, whereas the lower two show matching where the
query lane is different from the database lane. Current localization errors
are shown in the bottom left-hand corner.

lane.
A summary of the statistics of the tracklets constructed

within the complete driving school dataset is presented in
Table 1. The tracklet length is defined as the number of
consecutive database images in which it appears, and the
number of tracklets per frame is the number of tracklets that
pass through a database image. Figure 7 shows the matched
features of a sample set of tracklets tracked through four
database frames.

Absolute localization errors are presented in Table 2
and Fig. 8. The proposed method achieved an average ac-
curacy of 0.68 m in the same lane case and 3.17 m in the
different lane case. It should be noted that when the query
images were captured in the right-hand lane, even perfect
image matching results would always result in at least a 2 m
error. This corresponds to the approximate width of the lane,
as both the proposed and baseline methods can only local-
ize longitudinally in the direction of motion. This can be
observed in Fig. 8, where the different lane curves start at an
error level of approximately 2 m.

The proposed database construction method makes use
of the forward motion of the vehicle for filtering strong fea-
tures for localization. However, as can be seen in Fig. 4,
the database includes many sharp corners. In these loca-
tions, the change in vehicle direction of motion causes some
of the tracked features to disappear from the field of view.
This results in the end of tracklets and the creation of new
ones as the view changes. To determine the affect of corners

Fig. 6 Graph showing the image matching performance of the evaluated
methods. These example sections are taken from areas where the query
images are captured (a) in the same lane as the database images, and (b) in
the lane to the right of the database image lane. For comparison, methods
without tracklets that use the average feature scale change for image match-
ing (Feature Scale DTW), average feature match cost (Feature Match Cost
DTW) and the WISURF-DTW method are also shown. The x-axis shows
the match error in terms of number of image frames between the selected
database match and the actual closest database image. The y-axis shows
the percentage of image match results that are within each error level.

Table 1 Tracklet statistics.

Max. Min. Avg.

Tracklet length [frames] 17 2 3.3

Number of tracklets per frame 789 78 255.4

on localization accuracy, we isolated one small section of
the driving school database including two straight sections
and two 90◦ corners, and compared the average localization
error of corner areas and straight areas. The results showed
an average localization error of 0.73 m in corner areas, and
0.68 m in straight sections with an overall error of 0.69 m
for the complete tested area.

5.5 Real-World Traffic Performance

In addition to the driving school dataset, experiments were
also performed on real-world data captured from a vehicle in
traffic. This allowed the testing of the system performance



WONG et al.: SINGLE CAMERA VEHICLE LOCALIZATION USING FEATURE SCALE TRACKLETS
709

Fig. 7 Sample “feature scale tracklets”, with each tracklet shown in a different color. The circles
represent the feature positions and their diameters show the feature scale, illustrating the scale increase
along the tracklet. Only some of the tracklets are shown for clarity.

Table 2 Localization accuracy.

Method
Query

lane

Avg.

error (m)

Max.

error (m)

Proposed
Same 0.68 4.61

Different* 3.17 4.56

Feature Scale DTW [7]
Same 1.00 11.04

Different* 3.43 5.25

Feature Match Cost DTW
Same 1.54 8.51

Different* 4.57 10.47

WISURF-DTW [2]
Same 3.71 14.33

Different* 7.14 24.10

*Includes approx. 2 m localization error from lateral lane offset

in situations where occlusions and temporal objects (such as
pedestrians and other moving vehicles) are common.

In these experiments, a Point Grey Ladybug camera
was mounted on the test vehicle and used to capture both
database and query image streams in a variety of city driv-
ing environments. Only the front facing camera was used,
with a capture rate of 15 frames per second (fps). The
data capture covered approximately 1 km of road, with the
database and query streams both being captured in the left-
hand lane. For these tests, accurate localization informa-
tion was not available, so the results are presented only with
image matching performance, verified manually. Figure 9
shows example images from this dataset, where typical traf-
fic and occlusions are observed. The resulting image match-
ing results are presented in Fig. 10.

6. Discussion

6.1 Localization Results

The average localization error when database and query im-
ages came from the same lane was lower than in our previ-
ous work [7], even with the use of only one camera, showing
that the per-feature database match voting system provides
a more stable image matching platform. On the driving

Fig. 8 Localization error of the proposed method using tracklets com-
pared with matching images using average feature scale change as a cost
measure (Feature Scale DTW), average feature match cost (Feature Match
Cost DTW), and the WISURF-DTW method. The graph shows the percent-
age of localization results within each metric error level. Graph (a) shows
the same lane localization results, and for the different lane results (b), the
localization error starts at about 2.0 m which approximately corresponds to
the width of the lane.

school dataset, the proposed “feature scale tracklet” method
reduced the average same lane localization error by 32%
and 44% over the Feature Scale DTW and Feature Match
Cost DTW methods, respectively. The average localization
error was reduced by 82% when compared to the baseline
WISURF-DTW method.

The approaches of Feature Scale DTW and Feature
Match Cost DTW differ only in the weights used for the
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Fig. 9 Example images from the dataset captured in real traffic. The
query image match for the database image has been largely occluded by a
vehicle.

image match cost measure. While Feature Scale DTW uses
only the scale component of Eq. (6) to determine an aver-
age image match cost over corresponding features, Feature
Match Cost DTW uses Eq. (6) directly. Feature response
and descriptor comparisons are included in the cost mea-
sure, with the same weights as used in feature matching.
The superior image matching performance of Feature Scale
DTW over Feature Match Cost DTW illustrates the strength
of using feature scale for image matching in this environ-
ment.

The proposed method uses two cost measures; one op-
timized for finding feature matches (Eq. (6)), and one for
image matching (Eq. (3)). The baseline Feature Match Cost
method uses the feature match cost of Eq. (6) directly as an
image match cost measure. To compare the image match
cost measure of the proposed method and the baseline Fea-
ture Match Cost method, we also performed an experiment
to optimize the weight values ws, wd, wr of Eq. (6) indepen-
dently of the feature matching procedure, in order to de-
termine the best possible combination of all three weight-
ings for an image match cost measure. It was found that
the weight values that were optimal for individual feature
matching in Eq. (6), as selected in Sect. 5.2, did not provide
optimal image matching performance when using Eq. (6)
averaged over all feature matches as an image match cost
measure. The results showed that a scale difference weight
ws of 1.0 and 0.0 for wd and wr provided the best image
matching. This is a system exactly equivalent to Feature
Scale DTW, and also the fundamental image match cost
used in the proposed method. The accuracy decrease when
using descriptor distance is potentially because the descrip-
tors of corresponding features from consecutive database
frames are very similar. This results in ambiguity when
choosing the image match based on descriptor distance, and
therefore the occurrence of incorrect image matches. Fea-
ture scale difference appears to be a more discriminative
measure for resolving forward camera motion. Note that the
feature response difference is very small for matched fea-
tures and does not contribute significantly to image match-
ing. It is, however, effective in filtering incorrect matches in
the feature matching process.

The superior image matching performance observed
when using scale difference only in Feature Scale DTW
and the proposed method confirms that feature scale change

within a tracklet (Eq. (3)) is a good parameter for image
matching, and also illustrates that comparing descriptors
within the tracklet is unnecessary for the localization step.
This is where the efficiency gains of the proposed method
become apparent, as descriptor comparisons are computa-
tionally expensive.

The proposed method also offers other efficiency ad-
vantages. Most query images are localized within three
image matching steps, compared to at least eight when us-
ing DTW and image match cost comparisons. We estimate
that the image matching performance with our “feature scale
tracklet” and per-feature voting system is on average at least
four times faster than the DTW-based feature scale differ-
ence method (Feature Scale DTW) and feature match cost
method (Feature Match Cost DTW) when using a similar
number of features. While the image matching step is much
faster when using the proposed tracklet system, the feature
extraction process is the same for all feature-based methods
and takes up a large proportion of the overall localization
time. Therefore, the scale change cost and feature match
cost methods used for comparison ran at around 7 Hz com-
pared to 15 Hz for the proposed method. Note that Feature
Scale DTW and Feature Match Cost DTW run at close to the
same speed, as the image cost measure calculation differs
only by two floating point number value comparisons per
feature. However, WISURF-DTW runs much faster than all
of the feature based methods and can run in real-time at all
practical frame rates.

All three feature-based methods also showed signifi-
cantly improved localization performance over WISURF-
DTW, especially in the maximum observed error. While the
use of the WISURF descriptor is a fast and efficient way
to compare overall scene similarity, incorrect matches occur
when consecutive database scenes either change very little
in overall appearance, or when the query image scene is
modified from the corresponding database scene — for ex-
ample, in the case of a lane change or occlusion by another
vehicle. Splitting each image into many descriptors adds
robustness in these situations. Even consecutive database
frames with similar overall appearance have individual fea-
ture points which change in scale, and are repeatable even
when a lane change takes place or an occlusion obstructs
some of the scene. The advantage of using many feature
point descriptors instead of an overall image descriptor is
further discussed in the following sections.

6.1.1 Different Lane Localization

Image matching is more challenging in the different lane
case because the scene viewed by the camera changes sig-
nificantly between lanes. This is illustrated by the base-
line WISURF-DTW method results shown in Fig. 6(b) and
Fig. 8. The WISURF-DTW method showed much higher
localization error in the different lane case when compared
to localizing in the same lane as the database, even when
considering the 2 m lane offset. However the proposed
method, after taking into consideration the lane offset, actu-
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ally achieved similar localization performance (Fig. 8) and
image matching performance (Fig. 6(a)) to the same lane
case. This illustrates one strength of using features for lo-
calization, as opposed to whole image similarity.

6.1.2 Real-World Localization

The image matching performance in the real-world traffic
environment is reduced for two reasons. Firstly, the cam-
era captured images at a rate of 15 fps, resulting in much
closer image separation and therefore smaller differentiation
between frames. Secondly, occlusions and dynamic traffic
scenes causing differences between the database and query
images pose a challenge for image matching. Looking at
individual matching failures, the baseline WISURF-DTW
method was much more affected by both of these issues than
the proposed method, which is evident in the image match-
ing results (Fig. 10). However, what is harder to see, is that
partially occluded scenes such as in Fig. 9 sometimes caused
complete matching failure when using WISURF, whereas
the proposed method’s matching performance was mostly
unaffected by such situations.

Database images captured from busy traffic environ-
ments will sometimes include tracklets with features ex-
tracted from temporal objects such as other vehicles and
pedestrians. These tracklets do not have much effect on the
localization process, as even if they are incorrectly matched
to query features, their database index votes are outweighed
by those of static features. In future work, vehicle and
pedestrian detection systems could be used to remove the
features from temporal objects. This would slightly re-
duce the database size and matching computation time. An-
other potential method to remove temporal object features
would be to make multiple database capture passes and cre-
ate tracklets from only consistent features over different cap-
ture sets. Information about matched features in the local-
ization process could also be used to improve the database
set of tracklets, which would also allow database evolution
over time.

In this paper, we do not consider backward motion or
junctions. While we assume forward motion, backward mo-
tion would usually be detected and correctly handled as long
as the matched tracklets sufficiently cover database frames
behind the current camera position. However, also testing
the previous database image as a match candidate would
potentially improve performance where backward motion is
likely. Places where the road forks would also not be dif-
ficult to include. At such locations, several candidate im-
ages (one for each possible traversal route) would be se-
lected as opposed to a single one. As localization progresses
along each potential traversal route, the route with the low-
est match cost would be selected as the correct one. A sim-
ilar process has been used successfully with the WISURF
method [21].

Fig. 10 Image matching results from the traffic dataset, presented in the
same format as Fig. 6. This dataset includes other vehicles and occlusions
typical of city driving.

6.2 Database Size and Lateral Localization

One consideration is the database size. The proposed
method creates a database of up to about 100 times the
size of the WISURF-DTW baseline method, depending on
the number of features extracted per image. The descrip-
tors take on average about 120 KB per meter. The local-
ization accuracy would definitely be improved by creating
a database with 1 m image spacing instead of the 2 m used
in these experiments; however, this would also result in a
database of twice the size. There are potentially many ways
to reduce the database size, including using simpler descrip-
tors, or monitoring and pruning descriptors which never get
matched to query image features over time. Within the “fea-
ture scale tracklets”, we could also maintain just one de-
scriptor per tracklet rather than the full set of feature de-
scriptors over several database images.

In urban environments where multi-lane roads are com-
mon, it is desirable to be able to accurately localize laterally
as well as longitudinally without requiring database passes
in all available lanes. This is an area for future research.

7. Conclusion

In this paper, we proposed a method of visual localization
using the comparison of feature point scale across corre-
spondences in a pre-constructed database. The experimental
results showed that robust image matching can be achieved
using this method. Our approach achieved average local-
ization errors of 0.68 m when database and query image
streams are in the same lane and 3.17 m in different lanes
with different lane results including the lane offset error (ap-
proximately 2 m).

Experiments presented in this paper used approxi-
mately 2 m database image spacing. While closer spacing
would provide more accurate localization, it would also in-
crease the database size.

The performance of the proposed method was also ver-
ified in real-world traffic environments. Image matching
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was successful in dynamic road scenes with occlusions, il-
lustrating the robustness of using the scale of feature points
for localization.

Future works will include more testing with different
datasets and occluded scenes, as well as different database
image spacing. We plan to implement a lateral localization
system to remove the offset error introduced when travel-
ing in a different lane from the database stream. Currently,
the proposed method uses a binary voting system for image
match selection. We also plan to implement a probabilistic
voting system to increase the contribution of strong feature
correspondences in image matching.
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