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Abstract: During the night or in poorly lit areas, thermal cameras are a better choice instead of normal
cameras for security surveillance because they do not rely on illumination. A thermal camera is
able to detect a person within its view, but identification from only thermal information is not an
easy task. The purpose of this paper is to reconstruct the face image of a person from the thermal
spectrum to the visible spectrum. After the reconstruction, further image processing can be employed,
including identification/recognition. Concretely, we propose a two-step thermal-to-visible-spectrum
reconstruction method based on Canonical Correlation Analysis (CCA). The reconstruction is done
by utilizing the relationship between images in both thermal infrared and visible spectra obtained by
CCA. The whole image is processed in the first step while the second step processes patches in an
image. Results show that the proposed method gives satisfying results with the two-step approach
and outperforms comparative methods in both quality and recognition evaluations.

Keywords: face image; thermal infrared; reconstruction; canonical correlation analysis

1. Introduction

Surveillance systems play a critical role in security as they contribute as a means for crime
prevention and investigation. In recent years, surveillance systems can be seen in a variety of places,
including commercial and even residential buildings. It is important for them to be able to work
continuously, day and night. Before one sets up and manages a surveillance system, there are many
factors that need to be considered. For example, locations covered by the cameras, level of security
that would like to be enforced and the type of the camera itself.

The location that the surveillance system covers is generally divided into two categories: indoors
and outdoors. From these two categories, the indoors surveillance system is relatively easier to handle.
This is because the illumination conditions can be controlled and there are not many other external
factors that can compromise the quality of an indoor image. In contrast, an outdoor surveillance
system has many factors that can make the surveillance more difficult. In the outdoors, illumination
conditions vary according to the time of day. Weather conditions may also obstruct the quality of
captured images.
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For the type of camera, cameras that work in the visible spectrum are usually used, which will
be referred to as normal cameras from hereon. Normal cameras capture an image depending on
illumination, as human eyes do. These cameras are relatively cheap and can be purchased easily. As an
example, a basic security surveillance system employs normal cameras to fulfill the role of surveillance.

On the other hand, a thermal camera performs in the thermal infrared spectrum and does not rely
on illumination. Instead, it captures infrared radiations that vary depending on the temperature of the
object. This capturing process is called thermal imaging. Due to this characteristic, thermal cameras
can be a better option over normal cameras for surveillance in nighttime and poorly lit areas.

Figure 1 shows an example of images in both visible and thermal infrared spectra. The presence
of a person can be seen clearly in the thermal image, but identifying the person is a different question.
The identification of people based only on their thermal information is not an easy task to accomplish.

(a) (b)

Figure 1. Image examples in different spectra: (a) in the visible spectrum; (b) in the thermal
infrared spectrum.

This paper focuses on the research in reconstructing the thermal face image to the visible spectrum.
By doing so, humans can see the face as they usually do: in the visible spectrum. Another advantage of
the reconstruction is that further image processing —that is usually done in the visible spectrum— can
also be performed. The reconstruction problem can be considered as a subset of the image conversion
problem, where the amount of literature is growing steadily.

In another spectrum, namely near-infrared spectrum, there is research on image conversion in
the visible spectrum. Among them is research by Chen et al. [1], Zhang et al. [2], and Goh et al. [3].
Although it is also called infrared, the near-infrared spectrum is in fact different from the thermal
infrared spectrum. The near-infrared spectrum is the closest to the visible spectrum; therefore, the
images captured have similar characteristics to those captured in the visible spectrum. However, due
to this similarity, a near-infrared camera also shares some disadvantages of a normal camera, such as
the effect of weather changes. In addition, the conversion of a near-infrared image to a visible image is
not as difficult as the conversion of a thermal image to a visible image.

Meanwhile, there are only few works available on the modality reconstruction from the thermal
spectrum. These works are done by Li et al. [4] and Dou et al. [5], where both employed a patch-based
approach for the reconstruction process, after considering that local facial traits are important for
the reconstruction. Li et al. [4] utilized Markov Random Fields (MRF) while Dou et al. [5] made use
of Sophisticated Locally Linear Embedding (LLE) on top of the patch-based method. Therefore, the
patch-based approach is considered as the state-of-the-art method in this field. However, the usage
of only local facial traits have problems in regards to the facial structure in the visible spectrum.
The reason is that this approach ignores the global structure of the face, which, in turn, makes the
reconstructed face look choppy and unnatural.
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The super-resolution problem, which tries to create a high resolution image from a low resolution
one, shares some similarities with this problem. For face images, the process is also commonly known
as face hallucination, a term coined by Baker and Kanade [6]. The amount of study in this particular
field is plenty in comparison to the previously mentioned fields. For example, works by Liu et al. [7]
and Ma et al. [8] where both of them take a two-step approach, in which the importance of both a global
parametric model and a local non-parametric model was shown. The proposed method is inspired by
this method, utilizing both the face image as a whole and its local features.

The proposed method also considers the relationship between thermal and visible information of
a face. Transforming a face from the thermal spectrum to the visible spectrum can not be done directly,
because a factor like changes in temperature can compromise the transformation. However, even when
the temperature of a face changes, its thermal pattern will not be affected. In the visible spectrum,
the structure of a face also persists, meaning the location of eyes, nose and mouth are relatively fixed.
Under these assumptions, the proposed method utilizes Canonical Correlation Analysis (CCA) [9] to
learn the relationship between the thermal pattern in the thermal spectrum and the face structure in
the visible spectrum. The details of the proposed method are explained in the next section.

The rest of the paper is organized as follows. Section 2 elaborates on the proposed method in
detail. Experiments conducted in this research are described in Section 3. Section 4 provides further
discussion of the research, and Section 5 concludes this paper.

2. Learning-Based Reconstruction Method

As previously mentioned, the method in this research takes a two-step approach, which will be
called from hereon as Global Reconstruction and Local Refinement steps, respectively. Each step has
their own training and reconstruction processes. Figure 2 shows the flows of the training and the
reconstruction processes of the proposed method.

(a) (b)

Figure 2. Process flow of the proposed method: (a) training process; (b) reconstruction process.

To understand the method more easily, the explanation of the reconstruction method is divided
into the two steps; the Global Reconstruction and the Local Refinement. First, the training process of
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the Global Reconstruction step is described and followed by its reconstruction process. After that, we
move on to the training and reconstruction processes of the Local Refinement step.

CCA is employed in the training process of both steps. CCA finds the maximum correlation
between the thermal and the visible images, where, in this case, it corresponds to finding the maximum
correlation between the thermal pattern and the face structure mentioned previously. Although CCA
assumes that the relationship is linear, it can map a thermal information of a face to its counterpart in
the visible spectrum.

2.1. Global Reconstruction

In this step, a face image is globally reconstructed from the thermal spectrum to the visible
spectrum. The reconstructed face image does not possess individuality and details because the
reconstruction is performed on the prominent face features. Due to this, the reconstructed face image
can be utilized as a base image and further refined in the Local Refinement step. These facial features
are extracted with Principal Component Analysis (PCA). The use of CCA in this step is to learn the
relationship between the principal components of both the thermal pattern and the face structure from
their separate eigenspaces.

2.1.1. Training Process

It is important to point out that in the training process, pairs of face images from both the thermal
infrared and the visible spectra are utilized. This also holds true for the Local Refinement step.
The notation for thermal data is Xspace = (xspace

1 xspace
2 · · · xspace

N ) and Yspace =

(yspace
1 yspace

2 · · · yspace
N ) for visible data, where the superscript “space” indicates which space

the data is in with N number of training data. In this research, options for “space” are “img”, “eig”, or
“coh” for image space, eigenspace, and coherent space, respectively.

Face images in both thermal data and visible data need to be centralized according to Equations (1)
and (2). Note that the centralization process is done on each observation n = 1, 2, · · · , N, creating
X̄img = (x̄img

1 x̄img
2 · · · x̄img

N ) and Ȳimg = (ȳimg
1 ȳimg

2 · · · ȳimg
N ) for thermal and visible images,

respectively. µX and µY are mean vectors of each spectrum that will be used later:

x̄img
n = ximg

n − µX (1)

ȳimg
n = yimg

n − µY (2)

Training data are then projected onto the eigenspace utilizing projection matrices PX and PY
obtained from applying PCA on the centralized data X̄img and Ȳimg. This process is shown in
Equations (3) and (4). It should be noted that thermal and visible data have their own eigenspaces,
represented by Xeig = (xeig

1 xeig
2 · · · xeig

N ) for the thermal spectrum and Yeig = (yeig
1 yeig

2 · · · yeig
N ) for

the visible spectrum:
Xeig = PXX̄img (3)

Yeig = PYȲimg (4)

From their respective eigenspaces, CCA is applied to obtain the correlation between thermal and
visible images of the training data. This is done by finding a base for each variable, so that both bases
are optimal to the corresponding correlation of the bases. The dimensionality of these new bases is at
most equal to the smallest dimensionality of the two variables. Studying these two sets of data with
CCA produces two projection matrices, one for each piece of data. These projection matrices are what
we need, as the correlation between the projections of the two data is maximized. Details of the CCA
can be seen in [10].

Projection matrices QX and QY are obtained from CCA and are used to project the thermal
and visible training data from their own eigenspaces onto a coherent space. Before doing so, the
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centralization process for Xeig and Yeig is performed as shown in Equations (5) and (6), creating
X̄eig = (x̄eig

1 x̄eig
2 · · · x̄eig

N ) and Ȳeig = (ȳimg
1 ȳimg

2 · · · ȳimg
N ):

x̄eig
n = xeig

n − νX (5)

ȳeig
n = yeig

n − νY (6)

Similar to Equations (1) and (2), νX and νY are mean vectors of each spectrum that will be used
later. The projection process is done following that according to Equations (7) and (8):

Xcoh = QT
XX̄eig (7)

Ycoh = QT
YȲeig (8)

The training data in the coherent space are represented by Xcoh and Ycoh for thermal and visible
data, respectively. This concludes the training process of the Global Reconstruction step.

2.1.2. Reconstruction Process

The reconstruction process of the Global Reconstruction step involves a new thermal face image
ximg that will be reconstructed to a visible face image ỹimg. It is important to note that ỹimg represents
the globally reconstructed face image and undergoes enhancement later in the Local Refinement step.

The reconstruction begins with the process of projecting a new thermal face image onto the
coherent space. Two operations are performed to achieve this, as shown in Equations (9) and (10).
Equation (9) shows the process of projecting the face image ximg to the eigenspace while Equation (10)
shows the process of projecting the face image xeig to the coherent space. xcoh is the desired output
from these operations, projection of the thermal face image onto the coherent space:

xeig = PX(ximg − µX) (9)

xcoh = QX(xeig − νX) (10)

where µX , νX , PX , and QX in these equations are obtained from the training process.
Following these operations, the reconstruction is performed in the coherent space by Locally

Linear Embedding (LLE) [11]. The LLE is a neighbor-based reconstruction method, meaning that it
requires a certain number of neighbors to be able to perform the reconstruction. First, it learns the
relationship between the test data and the nearest neighbors in the thermal spectrum. It then calculates
the reconstructed test data using that relationship, by applying it to the neighbors’ counterpart in the
visible spectrum.

The LLE starts by finding the K neighbors of xcoh using the nearest neighbor method.
Consider Ax = (a1

x a2
x · · · aK

x ) as the K neighbors of xcoh. The error function that needs to be minimized
in the reconstruction process is shown in Equation (11):

ε = |xcoh −
K

∑
k=1

wkak
x| (11)

where w = (w1, w2, · · · , wK)T is the reconstruction weight vector. To solve this minimization problem,
a local gram matrix G with gj,k as its element is introduced in Equation (12), where j, k = 1, 2, · · · , K:

gj,k = (xcoh − aj
x) · (xcoh − ak

x) (12)
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With this, the weight vector w can be calculated with Equation (13). Here, g−1
j,k is an element

of G−1 (the inverse of matrix G). The reconstruction error is minimized by the use of the Lagrange
multiplier to enforce ∑k wk = 1 [12]:

wk =
∑j g−1

j,k

∑j ∑k g−1
j,k

(13)

The weight vector w is then used to estimate the visible data as shown in Equation (14).
Ay = (a1

y a2
y · · · aK

y ) contains K neighbors of visible data whose configurations are identical to
those of Ax. This means that the index of Ax is referring to the thermal data and the index of Ay is
referring to its pair, which is the visible data:

ycoh =
K

∑
k=1

wkak
y (14)

where ycoh is the reconstructed visible data in the coherent space.
The last process in this phase is to project the newly reconstructed visible data back to the image

space. Equation (15) with Q†
Y = (QYQT

Y)
−1QY as the pseudo inverse shows the projection from the

coherent space onto the eigenspace, while Equation (16) shows the projection from the eigenspace onto
the image space. µY and νY in these equations are averages obtained from Equations (2) and (6):

yeig = Q†
Yycoh + νY (15)

ỹimg = PYyeig + µY (16)

where ỹimg represents the globally reconstructed visible face image and will be used later in the
reconstruction process of the Local Refinement step.

2.2. Local Refinement

The Local Refinement step is where the details of the face are reintroduced, as it was lost in the
Global Reconstruction. In order to accomplish this, we employ multiple reconstructions to patches of
the globally reconstructed image. As the size of the patch is small, a feature extraction method like
PCA is no longer necessary. This ensures the details in the patches are not lost. In this step, CCA learns
the relationship of patches from the thermal and the visible spectra directly from the image space. The
patches are retrieved by a sliding window that moves through an image and created with overlapping
pixel information. Figure 3 shows some visual examples of the patches.

Figure 3. Examples of patches taken from a face image.

The main idea of the Local Refinement step is to use residual components to perform
enhancement/refinement of globally reconstructed data. For that purpose, the training process
learns the relationship of residual components in the training data, while the reconstruction process
utilizes the residual components for refinement.
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2.2.1. Training Process

First, in order to proceed with the training process, it is necessary to have the globally
reconstructed images of training data. This is the reason why the reconstruction process of the
Global Reconstruction step is explained in advance. The reconstructed training data are represented
by Ỹimg

n,l = (ỹimg
1,l ỹimg

2,l · · · ỹimg
N,l ), where n = 1, 2, · · · , N represents an observation with l = 1, 2, · · · , L

as its patch index. The reconstructed data can also be called as globally reconstructed data, referring to
the Global Reconstruction step.

After the reconstruction, the difference between each of the reconstructed data Ỹimg
n,l and the actual

training data Yimg
n,l = (yimg

1,l yimg
2,l · · · y

img
N,l ) can be calculated per patch, according to Equation (17):

himg
yn,l = yimg

n,l − ỹn,l (17)

where Himg
Yl

= (himg
y1,l himg

y2,l · · · himg
yN,l ) is the residual components of visible data. This is also done with

the thermal data as shown in Equation (18). The obtained residue contains information from the
globally reconstructed image instead of information only from the thermal image:

himg
xn,l = ximg

n,l − ỹn,l (18)

where Himg
Xl

= (himg
x1,l himg

x2,l · · · himg
xN,l ) is the residual components of the thermal data. Both Himg

Xl
and

Himg
Yl

are used in this step to learn the relationship of those residual information from different spectra.
The rest of the training process is similar to those in the Global Reconstruction step without the PCA.
As a reminder, the PCA is not performed in this step because the details that were lost in the previous
step due to the PCA are going to be reintroduced. Furthermore, since the patch size is already small,
feature extraction is not necessary.

In order to carry on with the Local Refinement step, the training patches are centralized according
to Equations (19) and (20), creating H̄img

Xl
= (h̄img

x1,l h̄img
x2,l · · · h̄img

xN,l ) and H̄img
Yl

= (h̄img
y1,l h̄img

y2,l · · · h̄img
yN,l ) and

then projected straight onto the coherent space as shown in Equations (21) and (22). λXl and λYl

represent the average of patch l in the thermal and the visible data, respectively:

h̄img
xn,l = himg

xn,l − λXl (19)

h̄img
yn,l = himg

yn,l − λYl (20)

Hcoh
Xl

= RT
Xl

H̄img
Xl

(21)

Hcoh
Yl

= RT
Yl

H̄img
Yl

(22)

RXl and RYl are projection matrices for patch l in each spectrum obtained from CCA, while the
training patches in the coherent space are represented by Hcoh

Xl
and Hcoh

Yl
. After the projection process,

the training process of the Local Refinement step concludes.

2.2.2. Reconstruction Process

The reconstruction process involves reconstructing multiple patches of an image.
The reconstructed patches are then combined with the reconstruction results of the Global
Reconstruction step. The first operation in this step is calculating the residual value himg

x with:

himg
x = ximg − ỹimg (23)

where ỹimg is the result of the reconstruction process in the Global Reconstruction step.



Sensors 2016, 16, 568 8 of 16

The patches are retrieved from himg
x , represented as himg

xl where l = 1, 2, · · · , L is the patch index.
These patches are then projected onto the coherent space as:

hcoh
xl

= RT
xl
(himg

xl − λXl ) (24)

The succeeding operation is to use LLE to obtain the reconstructed patches. The minimization
problem in this case is:

ε = |hcoh
xl
−

K

∑
k=1

wk
l bk

x| (25)

where w = (w1
l , w2

l , · · · , wK
l )

T is the reconstruction weight vector we require and Bxl = (b1
xl

b2
xl
· · · bK

xl
)

represents K nearest neighbors of hcoh
xl

at patch l.
After we obtained the weight vector, the reconstructed visible patch can be calculated with

Equation (26). In this equation, Byl = (b1
yl

b2
yl
· · · bK

yl
) represents K neighbors whose index is the same

with Bxl . Note that this means the weight vector is different for each patch location:

hcoh
yl

=
K

∑
k=1

wk
l bk

Yl
(26)

The reconstructed patches are then projected back onto the image space with:

himg
yl = R†

Yl
hcoh

yl
+ λYl (27)

With the reconstructed patches and the reconstructed image from the previous phase, the final
image is created by combining them as:

yimg = ỹimg + himg
y (28)

where himg
y in the equation is the average of the overlapping pixels of the patches himg

yl . This concludes
the Local Refinement step and also the reconstruction process.

3. Experiment

The main purpose of this paper is to reconstruct the face image from the thermal infrared spectrum
into the visible spectrum. An experiment was conducted to assess the reconstruction capability of the
proposed method by evaluating the produced face images.

We utilize a dataset created for this research which consists of face images of 180 Japanese
people (169 males and 11 females) with five subtle variations for each person. The data were taken
simultaneously in both thermal infrared and visible spectra. In total, we have 1800 images with
900 images per spectrum. The size of these face images were 56× 64 pixels. The images were taken
indoors at room temperature and available in both thermal infrared and visible spectra. The camera
used for data capture was Avionics’ TVS-500EX (Nippon Avionics Co., Ltd, Tokyo, Japan) [13]. The
wavelength that can be captured by the camera ranged from 8–14 µm. The face images were taken at
the same time, referred to as pairs, and then underwent preprocessing before they were used.

3.1. Experimental Setup

An assumption was made in this experiment that a person’s face variation exists in the training
data. To elaborate further, from face variations of a person available, one was used for testing while
the others were used for training. This means the test images and training images were not intersected.
The experiment here was performed with cross validation.

The evaluation methods of the reconstructed face images were Peak Signal to Noise Ratio
(PSNR) [14] and Structural Similarity (SSIM) [15]. Both of these methods compared the reconstructed



Sensors 2016, 16, 568 9 of 16

face with its target/original in the visible spectrum. In other words, the evaluation of the reconstructed
face quality. Face recognition of the reconstructed face images was also conducted with the EigenFace
method [16].

There are several parameters needed to be considered by the proposed method to perform
reconstruction of a face image. Among them are the number of neighbors used for reconstruction
in the LLE method, patch size and the pixel displacement of the patch used in the Local Refinement
phase. For this experiment, the number of neighbors used was five and the patch size was 9× 9 pixels.
These parameters were obtained empirically through an experiment described in the next section.

The experiment compares the capability of the proposed method, which is a two-step method,
with holistic only and patch-based only methods. The experiment was conducted the same way for all
of the methods to guarantee fairness. The parameters used are also the same where it is applicable.
A holistic only method means the reconstruction is performed utilizing only the whole image, without
the patches. In other words, using only the Global Reconstruction step. This method is labeled as
Holistic LLE.

On the other hand, the reconstruction of patch-based only method utilizes the patches of an
image. It is important to note that the patch-based method was also the method of choice in both
Li et al. [4] and Dou et al. [5]. The patch-based method is further divided into three, based on their
reconstruction algorithm. The first one is Patch-Based LLE, which is similar to the Local Refinement
step of the proposed method, but it works directly on the image instead of the residual image. The
second one is labeled as Patch-Based 1NN, where the method finds the most similar thermal patch
from the training data and reconstructs the face using the visible pair of said patch. This reconstruction
method is the most conventional out of all the methods experimented in this paper. The last method is
labeled as Patch-Based k-NN, a method that averages k number of visible patches whose thermal pairs
are closest to the input patch, where k is the number of neighbors.

3.2. Results

The evaluation results of the proposed method, the holistic method, and the various patch-based
methods can be seen in Table 1. Some examples of the reconstructed face image can be seen in Figure 4.
For recognition evaluation, only the recognition rate is shown. Illustrations such as the ROC (Receiver
Operating Characteristic) curve are not provided because EigenFace is a nearest neighbor method
that has no threshold value. In exchange, a heat map representation of the confusion matrix of the
recognition evaluation can be seen in Figure 5. This heat map is specifically of the proposed method.
Figure 6 shows visual examples in various steps, also only for the proposed method.

From these results, it can be seen that the proposed method outperformed other comparative
methods in all quality evaluations (PSNR and SSIM). The reason is because the proposed method
employs both full image reconstruction to create a base face image in the Global Reconstruction step
and reintroduces the details of the face in the Local Refinement step. These details are important for
these evaluations.

Table 1. Comparison of the proposed method with the holistic method and various patch-based
methods (Number of neighbors: 5, Patch size: 9× 9 pixels). SE represents the standard error.

Method PSNR (SE) (dB) SSIM (SE) Recog. Rate (%)

Proposed 33.11 (3.69) 0.95 (0.05) 98.44
Holistic LLE 27.04 (1.81) 0.85 (0.05) 98.33

Patch-Based LLE 29.21 (4.09) 0.92 (0.06) 87.33
Patch-Based 1NN 19.47 (1.78) 0.73 (0.06) 1.45
Patch-Based k-NN 25.38 (3.41) 0.88 (0.07) 63.78
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(a) (b) (c) (d) (e) (f)

Figure 4. Examples of reconstructed images by various methods. Each row indicates a person and the
columns represent images of: (a) ground-truth; (b) proposed method; (c) holistic LLE (Locally Linear
Embedding); (d) patch-Based LLE; (e) patch-Based 1NN (Nearest Neighbor); (f) patch-Based k-NN.

Figure 5. A heat map representation of the confusion matrix of the recognition evaluation. It goes from
dark blue to dark red, where the representations of higher values are close to dark red.

(a) (b) (c) (d) (e)

Figure 6. Visual examples in various steps of the proposed method: (a) thermal infrared
input; (b) globally reconstructed images; (c) residual images; (d) fully reconstructed images;
(e) ground-truth images.
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In this research, it is also important to look at the actual reconstructed face images as shown in
Figure 4. The reconstruction results of the proposed method resembled its ground-truth closely, where
other comparative methods had their own problems in doing so. For Holistic LLE, the reconstructed
face images lacked personality and details. In addition, they could be mistaken with someone else.
The results of Patch-Based LLE were relatively better than those of the Holistic LLE; they look more
similar to the ground-truth. However, there were a lot of artifacts in them. While the Holistic LLE
method’s results lack details, the Patch-Based 1NN produces results that have even less details.
This is due to the usage of only one visible patch for the reconstruction. On the other hand, the
Patch-Based k-NN method’s reconstruction results are relatively detailed even though there is still
some mis-reconstruction.

For recognition results, the proposed method also outperformed all of the comparative methods.
The recognition results of the Holistic LLE almost contend with the proposed method. This is due
to the use of EigenFace as the recognition method, where only the prominent features of the face are
used to perform the recognition. This means the details of the reconstructed face did not influence the
recognition rate, rendering the details reintroduced by the Local Refinement step less effective. As
the most conventional of all of the methods, Patch-Based 1NN achieved the lowest performance in all
types of evaluations.

There are still failures in these reconstructed images as seen in the last row of Figure 4, among
others. All methods struggled to correctly reconstruct this person. A possible reason for this is that
there were faces whose thermal patterns were similar to the input, causing LLE to fail in finding the
correct neighbors. It is also important to consider that, by using LLE, we assumed that the thermal
nearest neighbors calculated from the thermal input have the same geometric relations with the visible
counterpart of the input and its neighbors. This is not always the case, however, and this is also a
possible reason why the reconstruction can fail. Another reason is that maybe the hair on the upper
part of the image hindered the reconstruction process. As a human observer, we can tell that the
reconstructed face and the ground-truth are not quite the same person.

It can be concluded that the proposed method takes the best of both holistic only and patch-based
only approaches with satisfying results across two evaluation criteria; quality and recognition.

4. Discussion

In this section, additional experiments are presented for discussion. As mentioned previously,
experiments were done to obtain the optimal set of parameters for the proposed method. Another set
of experiments was also conducted to evaluate the proposed method in a more difficult situation.

4.1. Finding Optimal Sets of Parameters

The adjustable parameters are patch size and number of neighbors. The options for patch size
used in the Local Refinement step were 5× 5, 7× 7, and 9× 9 pixels. The number of neighbors used
by the LLE method was selected from either 5, 15, or 30.

The results can be seen in Table 2. Based on these results, the selected set of parameters were
five neighbors and 9× 9 pixels patch size. This set of parameters achieved the highest results in
all evaluation methods. These parameters were used for the comparison experiment between the
proposed method, the holistic method, and the patch-based method conducted in Section 3.
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Table 2. Evaluation of various patch sizes with various numbers of neighbors. SE represents the
standard error.

# of Neighbors Patch Size (Pixels) PSNR (SE) (dB) SSIM (SE) Recog. Rate (%)

5
5× 5 31.40 (3.20) 0.93 (0.05) 98.33
7× 7 32.57 (3.57) 0.94 (0.05) 98.11
9× 9 33.11 (3.69) 0.95 (0.05) 98.44

15
5× 5 29.88 (2.71) 0.90 (0.06) 97.78
7× 7 31.66 (3.28) 0.93 (0.05) 97.67
9× 9 32.41 (3.50) 0.94 (0.05) 97.78

30
5× 5 29.03 (2.48) 0.89 (0.05) 97.56
7× 7 30.31 (2.88) 0.92 (0.05) 97.56
9× 9 31.31 (3.20) 0.93 (0.05) 97.67

4.2. Type B: Reconstruction of Unknown Person’s Face Image

In Section 3, an experiment was conducted in the case where the variations of test data were
already trained by the proposed method. For further discussion, experiments were done in the
opposite case, where an unknown person’s face was reconstructed. This case was more difficult and
challenging, because the proposed method did not learn the relationship between the thermal patterns
and the visible information of the tested person. For convenience, this experiment will be labeled as
Type B. It is also for this reconstruction to be conducted, as the feasibility of the reconstruction needs
to be evaluated.

Two types of experiments were conducted in this subsection. The first one was an experiment
done to see the performance of the reconstruction for Type B. In the second experiment, we analyzed
the effect of increasing the size of training data for Type B.

4.2.1. Performance Evaluation of Type B

The motivation for this experiment is to see the feasibility of reconstructing a face image in
this more difficult situation. As mentioned previously, the proposed method did not learn the
relationship between the thermal patterns and the visible information of the tested person. Instead,
the reconstruction process utilizes the relationship learned from other people in the dataset.

As it is fundamentally different with the previous experiment, the dataset which contains
180 people was divided as follows. Twenty people from the available 180 were separated to be
used later in the recognition evaluation. One-hundred-sixty people were divided into 16 groups with
10 people each and cross-validation was performed 16 times. After the face reconstruction of a group
was performed, the ground-truths of that group and the 20 people that were excluded earlier were
brought together (for a total of 30 people) for the recognition evaluation. This scheme aims to avoid
the people used for training in the recognition evaluation, as it raises the possibility of misclassification
yet keeps the difficulty of the recognition quite high.

The first experiment was to assess the reconstruction capability of the proposed method for
Type B. This experiment is similar to the experiment in the previous section, where we also compare
the capability of the proposed method with the holistic only and various patch-based only methods.
The results of this experiment can be seen in Table 3.

Based on the results in Table 3, it can be seen that Type B reconstruction is not feasible currently.
Improvement of the proposed method is necessary to increase the performance—for example, to learn
the relationship between the visible and thermal spectra non-linearly via kernel. Another aspect to
consider is increasing the size of the training data, which affects variation of faces available for the
reconstruction. Section 4.2.2 provides more detail on this issue.

For quality evaluation, the differences between all of the methods were negligible except for the
Patch-Based 1NN. This is contrary to the experiment conducted in the previous section, where the
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proposed method outperformed all of the comparative methods. For recognition evaluation, however,
Patch-Based LLE scored the highest. The reason behind this is highly related to the results of the
reconstruction using the whole image. The main problem with performing the reconstruction in
this favor is if the reconstructed face was not close to the actual face. When the base face image is
far from the truth, reintroducing the details with the Local Refinement step could not improve the
results too much. On the other hand, Patch-Based LLE did not make use of the reconstructed base
image and reconstructed the face directly in small patches. This method negates the possibility of
mis-reconstruction from the whole image.

Table 3. Type B: Comparison of the proposed method with the holistic method and various patch-based
methods (Number of neighbors: 5, patch size: 9× 9 pixels). SE represents the standard error.

Method PSNR (SE) (dB) SSIM (SE) Recog. Rate (%)

Proposed 19.36 (3.11) 0.70 (0.13) 12.25
Holistic LLE 19.39 (3.11) 0.70 (0.13) 11.38

Patch-Based LLE 19.46 (2.40) 0.69 (0.09) 23.13
Patch-Based 1NN 18.05 (1.64) 0.65 (0.07) 3.13
Patch-Based k-NN 19.26 (2.41) 0.69 (0.09) 19.88

This explanation also holds true for Patch-Based k-NN, which performed the second highest in
the recognition evaluation. However, since Patch-Based 1NN only utilizes one visible patch, it is not
sufficient to have a satisfactory reconstruction.

The actual reconstructed faces can be viewed in Figure 7, where we can see that all of the methods
struggled to reconstruct the faces. The reconstruction results of the proposed method can be seen as an
enhanced version of the holistic method, reinforcing what was mentioned previously. However, all
variations of the patch-based approaches produced results that looked unnatural in multiple areas of
the face. From these results, we can also conclude that the reconstruction of an unknown person’s face
image is difficult.

(a) (b) (c) (d) (e) (f)

Figure 7. Type B examples of reconstructed images by various methods. Each row indicates a
person and the columns represent images of: (a) ground-truth; (b) proposed method; (c) holistic
LLE; (d) patch-Based LLE; (e) patch-Based 1NN; (f) patch-Based k-NN.

4.2.2. Type B Reconstruction with Various Sizes of Training Data

The second experiment was conducted to assess the effect of increasing the number of data in
the training process. The motivation for this experiment is as follows. As previously mentioned,
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the proposed method does not know how the unknown thermal face would look like in the
visible spectrum. This hampers the proposed method in performing the reconstruction correctly.
However, if the number of training data grows, then the available face variations for reconstruction
grow as well. This increases the possibility of the proposed method finding a closer match in the
reconstruction process.

The way we performed the experiment is as follows. From x number of people, 10 people were
taken as test data while the rest of them were used for training. After the reconstruction, 20 people
outside of the training and test data were combined together with the ground-truths of the test
data for a total of 30 people. The reconstructed test data were used as an input for these 30 people
recognition evaluation. It is important to note that the same 10 people were used for various numbers of x.

The results of this experiment are shown in Table 4. Even though the overall results were still low,
the increasing values of PSNR and recognition rate can be seen whereas SSIM values are consistent.
This shows that the existence of more variations in the training data helped the reconstruction process.
In theory, a very large amount of training data can produce a satisfactory result of reconstructing an
unknown person’s face. Having said that, to state the number of data needed is very difficult.

Table 4. Type B: Evaluation of different numbers of training data (Number of neighbors: 5, patch size:
9× 9 pixels). SE represents the standard error.

# of People PSNR (SE) (dB) SSIM (SE) Recog. Rate (%)

40 18.74 (2.82) 0.72 (0.09) 4.00
70 19.63 (2.68) 0.74 (0.07) 6.00

100 19.64 (2.89) 0.72 (0.10) 10.00
130 19.80 (2.84) 0.73 (0.10) 6.00
160 20.26 (2.52) 0.73 (0.09) 14.00

(a) (b) (c) (d) (e) (f)

Figure 8. Type B examples of reconstructed images with various number of training data. Each row
indicates a person and the columns represent: (a) ground-truth images; (b) reconstructed images from
40 people’s training data; (c) reconstructed images from 70 people’s training data; (d) reconstructed
images from 100 people’s training data; (e) reconstructed images from 130 people’s training data;
(f) reconstructed images from 160 people’s training data.

The actual reconstructed face images are shown in Figure 8, where the proposed method failed to
reconstruct the face satisfactorily. Although the reconstructed faces do not resemble the ground-truths
and we can tell that they are not the same person, as the number of the training data increases, changes
of the reconstructed faces could be observed. The most significant changes could be observed when the
training data increased from 40 persons to 70 persons. Further than that, only small changes were observed.
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5. Conclusions

This research attempted to reconstruct a face image from the thermal infrared spectrum to the
visible spectrum. In order to achieve this, we proposed a two-step reconstruction method. The first step
is referred as the Global Reconstruction, where the reconstruction is performed on the whole image.
The second one is referred to as the Local Refinement, where patches of the image are reconstructed.

The method we proposed utilizes CCA in the training process in order to understand the
relationship between the thermal and the visible images. For the reconstruction of the face image, the
proposed method exploits the relationship between the nearest neighbors and the input to reconstruct
the face image.

Experiment was done to evaluate the reconstruction capability of the proposed method. Results
showed that the proposed method produces high scores in all evaluations and outperforms other
comparative methods.

This paper also provided discussion on the reconstruction of an unknown person’s thermal face
image, labeled as Type B. The proposed method struggles to perform the reconstruction because
there is no information of the face in the visible spectrum. This proves the difficulty of the task and
warrants further research in the field. A possible way to solve this is to learn the relationship between
the visible and the thermal spectra non-linearly via kernel. The effect of increasing the size of the
training data should also be taken into account, because it should increase the variety of faces available,
which, in turn, improves the chances of LLE to reconstruct a face image closer to the target. Therefore,
the expansion of the dataset both in size and variations (inclusion of other races) is included in our
future work.

Another future work is related to the recognition evaluation, where only a qualitative evaluation
with the EigenFace method was conducted. Additionally, an experiment can also be conducted to
evaluate the reconstruction results by human subjects.
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