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Abstract— Semantics can be leveraged in ego-vehicle local-

ization to improve robustness and accuracy because objects

with the same labels can be correctly matched with each

other. Object recognition has significantly improved owing to

advances in machine learning algorithms. However, perfect

object recognition is still challenging in real environments.

Hence, the uncertainty of object recognition must be consid-

ered in localization. This paper proposes a novel localization

method that integrates a supervised object recognition method,

which predicts probabilistic distributions over object classes for

individual sensor measurements, into the Bayesian network for

localization. The proposed method uses the estimated proba-

bilities and Dirichlet distribution to calculate the likelihood for

estimating an ego-vehicle pose. Consequently, the uncertainty

can be handled in localization. We present an implementation

example of the proposed method using a particle filter and

deep-neural-network-based point cloud semantic segmentation

and evaluate it by simulation and the SemanticKITTI dataset.

Experimental results show that the proposed method can

accurately generate likelihood distribution even when object

recognition accuracy is degraded, and its estimation accuracy

is the highest compared to that of two conventional methods.

I. INTRODUCTION

Object recognition has been significantly improved owing

to advances in machine learning algorithms. In particular,

deep neural network (DNN)-based semantic segmentation

(SS) enables precise pixel- and laser-wise object recog-

nition [1]–[4]. Ego-vehicle localization methods for lever-

aging semantics have been proposed [5]–[9]. The use of

semantics enables the correct matching of objects having the

same labels and improves localization robustness and accu-

racy. However, perfect object recognition is still challenging

in real environments. Therefore, the uncertainty of object

recognition must be considered in the localization. This

paper proposes a novel localization method that integrates

a supervised learning (SL)-based object recognition method

into the Bayesian network for localization. In this work,

we assume that the object recognition method estimates

probabilistic distributions over object classes for each sensor

measurement. Note that we define that using the probabilistic

distributions, not a certain label, in the matching process is

considering the uncertainty.

Figure 1 illustrates the graphical model of the proposed

method. The vehicle pose, x, is treated as a latent variable.

The control input, u, sensor measurement, z, semantic map,

m, and hyperparameters for the SL-based object recognition,
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Fig. 1. Graphical model of the proposed method. The proposed method

integrates a probabilistic object recognition method into the Bayesian

network for localization.

Θ, are treated as observable variables. The object recognition

estimates probabilities over the object classes, c, and we

assume that it can be used as an observable variable. A

training dataset for the object recognition, D = {Z, S},

is also treated as an observable variable, where Z and S

are a set of sensor measurements and its annotation labels.

The proposed method estimates posterior distribution over

the current vehicle pose.

The proposed method uses the object recognition results,

i.e., prediction using the SL-based object recognition, as

the observable variable, and it depends on the vehicle pose.

Therefore, the prediction must be modeled to calculate the

likelihood for estimating the vehicle pose. In this work,

Dirichlet distribution is used to model the prediction because

the prediction is discrete probabilistic distribution over the

object classes. We refer to this model as the class prediction

model (CPM). Because Dirichlet distribution can represent a

likelihood distribution over a discrete probabilistic distribu-

tion, the CPM enables to model possibility of misrecognition.

As a result, the vehicle pose can be robustly and accurately

estimated even when the SL-based object recognition is

noisy.

We first derive the mathematical details of the proposed

method and then present its implementation example using

a particle filter (PF) and DNN-based point cloud SS. We

validate the implemented method using simulation and the

SemanticKITTI dataset [10]. In the simulation experiments,

the robustness to degradation in the SS accuracy is validated,

and it is shown that the proposed method can accurately

generate the likelihood distribution even though the SS

accuracy is considerably low. In the validation using the

SemanticKITTI dataset, two other methods are compared

with the proposed method and it is illustrated that the

proposed method achieves the most accurate localization.

The contribution of this work is threefold.

• Proposing the novel localization method that integrates

the SL-based object recognition and makes it possible

to handle the object recognition uncertainty in the
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localization

• Deriving the mathematical details of the proposed

method and presenting the implementation example

using the PF and DNN-based point cloud SS

• Showing robust and accurate localization performance

from the experiments using the simulation and Se-

manticKITTI dataset.

The remainder of this paper is organized as follows.

Section II summarizes related work. Section III presents the

details of the proposed method. Section IV describes the im-

plementation details of the proposed method. Section V and

VI describe the experimental results. Section VII concludes

this work.

II. RELATED WORK

Point cloud registration-based localization, e.g., [11], [12],

is widely used in current autonomous navigation systems,

e.g., [13], [14]. However, registration based solely on metric

information sometimes causes obvious mismatches, e.g.,

vegetation is matched with a fence. To prevent these obvious

mismatches, semantics of objects must be leveraged.

The 3D normal distributions transform (NDT) [15] is

popular for autonomous driving, [16], [17], because it en-

ables fast 3D point cloud registration. Zaganidis et al. [18]

proposed semantic-assisted 3D NDT, where the object labels

of the points are used to compute the cost function. The

authors indicated that the method improved the accuracy,

robustness, and speed of NDT registration, especially in

unstructured environments. Zaganidis et al. [19] also pre-

sented the integration method of DNN-based SS into 3D

point cloud registration including semantic-assisted gener-

alized ICP (SE-GICP). SE-GICP is similar to the method

presented in [20], where the labels are used to find more

accurate correspondences. Chen et al. [8] used semantic ICP

and achieved an accurate odometry estimate. These works

leveraged semantics to improve point cloud registration;

however, they did not consider the uncertainty of the object

recognition.

Yi et al. [21] proposed the enhanced Markov localization

method to support contextual representations of a robot’s

location. In the method, a monocular camera and a set of

semantics are used for the spatial contexts of the object and

robot, and the features extracted from the image are intro-

duced to the Bayesian network for localization. These three

variables are used to calculate the likelihood for estimating

the robot pose and are modeled using Gaussian distributions;

they are thereby referred to as the contextual measurement

model. Atanasov et al. [22] presented the semantic observa-

tion model for monocular camera observations. In the model,

the bearing measurement, class, and class recognition score

are used as the observable variables. The authors also present

an efficient method to solve the data association problem

with semantics using a matrix permanent that was computed

from the bipartite graph. Bowman et al. [23] extended

the method and proposed the probabilistic data association

method for semantic SLAM. In the method, semantics are

introduced in the expectation-maximization (EM) procedure,

which enables flexible and robust data association. These

methods are similar to the proposed method because they

handle semantics via probabilistic modeling. However, the

use of Dirichlet distribution is not introduced in these meth-

ods.

Parkison et al. [24] presented semantic ICP through the

EM algorithm. Semantic labels and point associations be-

tween two point clouds can be treated as latent variables

using the EM algorithm. Consequently, despite inaccuracies

in their inference, the semantics improved the point cloud

registration results. The proposed method also treats seman-

tics as the observable variable; however, it can cope with

the uncertainty of the object recognition because Dirichlet

distribution is used to model the likelihood distribution.

We previously proposed the simultaneous localization and

measurement-class estimation method in [25], [26]. In the

method, mapped and unmapped object classes are simul-

taneously estimated using the environment map via the

class-conditional measurement model. This model makes

it possible to handle multiple object classes. However, the

method cannot achieve probabilistic integration of the object

recognition results. More specifically, the method cannot

handle object recognition results as prior to estimate the

measurement classes. In this work, we extended the method

to handle multiple object classes that were estimated by

an SL-based object recognition method. We also previously

proposed localization methods combined with the DNN

in [27]–[29]. The method proposed in this work is also

combined with the DNN; however, the DNNs used in the

previous works are not used for object recognition.

III. PROPOSED METHOD

A. Graphical model and its posterior distribution

Figure 1 illustrates the graphical model of the proposed

method. Our objective is to estimate the posterior distribution

over the current vehicle pose denoted as

p(xt|u1:t, z1:t, c1:t,m,Θ, D), (1)

where t and 1 : t represent current and sequential time

data. The details of the variables are described in the second

paragraph of Section I.

Because ct depends on xt, this equation can be re-written

using Bayes’s theorem as

p(xt|u1:t, z1:t, c1:t,m,Θ, D)

=ηp(ct|xt,u1:t, z1:t, c1:t−1,m,Θ, D)

· p(xt|u1:t, z1:t, c1:t−1,m,Θ, D),

(2)

where η is a normalization constant. The first term of the

right side of equation (2) can also be re-written using D-

separation as

p(ct|xt,u1:t, z1:t, c1:t−1,m,Θ, D) = p(ct|xt, zt,m,Θ).
(3)

This distribution models the predictions of the object classes

that use the SL-based object recognition with the condition

where the vehicle pose, sensor measurement, map, and

hyperparameters are given. We refer to this model as the



class prediction model (CPM), and the details are given in

Section III-B.

The second term of the right side of equation (2) can

also be re-written using the law of total probability and D-

separation. Finally, the posterior distribution over the current

vehicle pose is denoted as

p(xt|u1:t, z1:t, c1:t,m,Θ, D)

=ηp(ct|xt, zt,m,Θ)

∫

p(xt|xt−1,ut)

· p(xt−1|u1:t−1, z1:t−1, c1:t−1,m,Θ, D)dxt−1,

(4)

where p(xt|xt−1,ut) is the motion model [30].

B. Class prediction model

The sensor measurement is denoted as zt =
(z1t , z

2
t , ..., z

K
t ), where K is the number of measurements.

The probability over the object classes estimated

using the SL-based object recognition is denoted as

p(ct) = (p(c1t ), p(c
2
t ), ..., p(c

K
t )), where p(ckt ) is the

corresponding discrete distribution to zkt .

We first assume that each class prediction result is inde-

pendent and factorize the CPM as

p(ct|xt, zt,m,Θ) =

K
∏

k=1

p(ckt |xt, z
k

t ,m,Θ). (5)

Consequently, we can separately model the CPM for each

measurement. To define the CPM, we consider two cases in

which the object class is correctly and incorrectly predicted,

namely, the positive and negative classification cases. The

CPM is represented using the linear combination of the two

distributions over the cases expressed as

p(ckt |xt, z
k

t ,m,Θ)

=

(

cposi
cnega

)T

·
(

pposi(c
k
t |xt, z

k
t ,m,Θ)

pnega(c
k
t |xt, z

k
t ,m,Θ)

)

,
(6)

where cposi and cnega are arbitrary constants satisfying

cposi + cnega = 1, and pposi(·) and pnega(·) are distribu-

tions for modeling the positive and negative classifications,

respectively.

Because the probability over the object classes is discrete,

we model these distributions using Dirichlet distribution,

Dir(·). For example, pposi(·) is denoted as

pposi(c
k

t |xt, z
k

t ,m,Θ)

=Dir
(

ckt |a(xt, z
k

t ,m,Θ)
)

,

=
Γ
(
∑

i∈C

ia
)

∏

i∈C
Γ (ia)

∏

i∈C

p
(

ickt
)(ia−1)

,

(7)

where C is a list of the object classes, Γ(·) is the gamma

function and a(·) ∈ R|C|, (a(·))
i

= ia > 0, are the

hyperparameters of the Dirichlet distribution. pnega(·) is also

modeled using Dirichlet distribution.

To determine the hyperparameters, we can use the vehicle

pose, sensor measurement, map, and hyperparameter for the

SL-based object recognition. Therefore, we can determine

the hyperparameters of the CPM using the hyperparameters

Depth and Intensity maps

Input

Segmentation

Output

Fig. 2. The network of the point cloud SS. The architecture except for the

input and output layers is the same as that of SegNet presented in [2].

of the SL-based object recognition, which are already ob-

tained, i.e., the training has already been done. cposi and cnega
shown in equation (6) can also be determined by considering

the performance. Details of these parameter determinations

are described in Section IV-B.

IV. IMPLEMENTATION

In this work, we focus on the 3D LiDAR-based local-

ization problem and present an implementation example of

the proposed method using the PF and DNN-based point

cloud SS. To validate the implemented method, we use

the SemanticKITTI dataset [10]. This dataset provides the

object labels of the 3D LiDAR measurements included in

the KITTI odometry dataset [31]. This section describes the

implementation details.

A. Object class estimation

1) Object classes: In the SemanticKITTI dataset, 34

classes, including 14 static objects, are provided. The 14

static objects are used because we aim to solve the local-

ization problem. All the non-static objects are categorized

as an unknown class. Totally, we use 15 classes denoted as

C ∈ {unknown, Cstatic}, where Cstatic is a list of the static

objects.

2) DNN-based SS: We implement the DNN-based point

cloud SS as the SL-based object recognition. We referred to

SegNet [2] to develop the network used in this study. Figure 2

illustrates the overview of the network.

We create image data using the 3D LiDAR measurement.

Because each measurement, zkt , contains a 3D point and

intensity, we build depth and intensity maps; these maps are

concatenated. The width and height of the maps, W and

H , are set as W = 360 and H = 32, respectively. Hence,

W ×H × 2 size data is fed to the DNN.

The softmax layer is implemented as the activation func-

tion at the output layer. The DNN predicts discrete prob-

abilistic distributions over the object classes of each pixel.

The size of the output is W ×H×|C|. The categorical cross

entropy is used as the loss function

L =

N
∑

n=1

∑

i∈C

p(iĉn) log p(
icn), (8)

where N is the number of data and ĉ ∈ {0, 1} is the ground

truth object class.
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Fig. 3. Heatmaps of the SS results using the DNN (left and center) and

the CPMs (right) with barycentric coordinate representation. The top and

bottom figures are results of the positive and negative classifications.

B. Hyperparameter determination for CPM

As we mentioned in Section III-B, the vehicle pose, sensor

measurement, map, and hyperparameters for the SL-based

object recognition can be used to determine the hyperpa-

rameters for the CPM shown in equation (7). Because the

hyperparameters for the SL-based object recognition are

given, i.e., the DNN has already been trained, the DNN-

based SS performance can be considered to determine the

hyperparameters for the CPM. Therefore, we first conducted

pre-experiments to investigate the performance.

1) Investigation of SS performance: Figure 3 shows the

pre-experimental results. To obtain these results, we trained

the DNN using sequences from 00 to 10 except for 08 of

the SemanticKITTI dataset. The left and center figures are

validation results using sequence 08. The figures illustrate

heatmaps with barycentric coordinate representation which

can visualize three-dimensional Dirichlet distribution. These

2D points, p, are calculated as follows

p = ptargetpBL + potherspBR + punknownpT (9)

where ptarget, pothers, and punknown are probabilities over

the corresponding classes and pBL, pBR, and pT are 2D

points of the bottom left, right and top, respectively. pothers
is the summation of the probabilities except for those of the

target and unknown classes.

In the left and center cases of Fig. 3, road and building
were set as target class. The top and bottom figures are

results of the positive and negative classifications. In these

classifications, the measurement is categorized as a class to

that of the maximum probability. In the positive classification

cases, the frequency of the target class side is higher than

that of other sides. In the negative classification cases, the

frequency of all of the areas is almost equivalent.

Based on these results, we assume that (1) the CPM

is proportional to the object measurability in the positive

classification case and (2) the CPM is uniform in the negative

classification cases. Below, we discuss the calculation of the

measurability and how the hyperparameters for the CPM are

determined.

2) Measurability: The measurability of the i-th class ob-

ject represents the possibility where the object is measured.

Therefore, we define the measurability using the measure-

ment models, denoted as p(zkt |xt,
im), presented in [30].

Where im is the i-th class object map.

We define the measurability using the likelihood field

model (LFM)

pLFM(zkt |xt,
im) =

(

zhit
zrand

)T

·
(

phit(z
k
t |xt,

im)
prand(z

k
t |xt,

im)

)

,

(10)

where zhit and zrand are arbitrary constants satisfying zhit+
zrand = 1, and phit(·) and prand(·) are used to model items

related to the measurement of the mapped obstacles and

random noise1. In the implementation, these parameters were

set as zhit = 0.95 and zrand = 0.05.

In this work, we use the semantic map to calculate the

LFM (or the semantic LFM described in later). Note that the

CPM is calculated using the results of the LFM. The distance

field (DF) representation that describes the nearest distance

from obstacles to each voxel (or gird) is better solution to

quickly calculate the LFM. Hence, in our implementation,

i-th object map means a DF of i-th object and the semantic

map means a set of the DFs. To efficiently implement the

DFs, we used the method presented in [32].

phit(·) and prand(·), respectively, are denoted as

phit(z
k

t |xt,
im) =

1√
2πσ2

exp

(

−d(zkt ,xt,
im)2

2σ2

)

, (11)

prand(z
k

t |xt,
im) = unif(0, R), (12)

where σ2 is a measurement variance, R is the maximum

measurement range, d(·) returns the closest distance from a

scan point which is transformed based on the given pose to

obstacles existing on the i-th object map, and unif(·) is the

uniform distribution within a given range. σ2 and R were

set as σ2 = (0.1 m)
2

and R = 120 m while considering

specification of LiDAR used.

We define the unknown class object measurability using

the exponential distribution

punknown(z
k

t |xt,m) =
λ exp

(

−λrkt
)

1− exp (λR)
, (13)

where rkt is the measurement range and λ is its hyperparam-

eter. λ is also determined while considering the LiDAR’s

specification, namely, ensuring the measurement possibility

among the entire measurement range. Finally, it was set to

0.03.

3) Hyperparameter determination: As mentioned in Sec-

tion IV-B.1, the i-th object class probability is proportional to

the i-th object class measurability. The value of the Dirichlet

distribution is high when ia and p(ickt ) are higher than other

values. Therefore, we also assume that ia is proportional to

the measurability and determine the hyperparameter in the

positive classification case as

ia(xt, z
k

t ,
im,Θ) = 3m(xt,

ickt , z
k

t ,m) + 1. (14)

1In [30]; the item with the maximum measurement value is considered.

However, we do not consider the item because the 3D point cloud does not

usually have such measurements.



m(xt,
ickt , z

k

t ,m)

=

{

punknown(z
k
t |xt,m) (if ickt = unknown),

pLFM(zkt |xt,
im) (otherwise),

(15)

where m(·) is the measurability. In the negative clas-

sification case, all the hyperparameters were set to one

because we assume that the distribution is uniform, i.e.,

pnega(c
k
t |xt, z

k
t ,m,Θ) = Dir(ckt |1), where 1 ∈ R|C| is a

vector that all elements are one. The right side of Fig. 3

shows the CPM of the positive (top) and negative (bottom)

cases plotted using the above hyperparameters. Note that

the values shown in equation (14) were experimentally

determined while considering the actual classification results.

It is difficult to theoretically determine the parame-

ters described above. The data-driven-based method using

expectation-maximization algorithm to determine such pa-

rameters is presented in [30]. This method can be also ap-

plied to the proposed method. However, we empirically know

that these parameters do not strongly affect the localization

performance if these are roughly close to its optimal value.

Therefore, we did not adopt the method in this work.

4) Coefficient determination: The coefficients of the

CPM, cposi and cnega, shown in equation (6), are also

determined based on the SS performance. Table I shows the

SS accuracy (SSA). Based on these results, we set these

coefficients as cposi = 0.7 and cnega = 0.3.

C. Particle filter-based posterior estimation

The target posterior distribution shown in equation (1)

is estimated using the PF. The following procedures are

recursively performed to estimate the joint posterior:

1) estimate the probabilities over the object classes

2) update the particles’ poses based on the motion model

3) calculate the particles’ likelihood using the CPM

4) estimate the vehicle pose and re-sample the particles

The details of 2) and 4) are given in [30]. In this study, the

number of particles, M , was set to 500.

V. SIMULATION EXPERIMENTS

We first compared the likelihood distributions calculated

using three models in the simulation environment.

A. Conditions

1) Environment: A simple simulation environment was

created as shown in Fig. 4, with two static and three dynamic

object classes. The black area of the environment represents

a free space. A color scheme is the same to that of the

SemanticKITTI dataset.

2) Sensor measurement: A 2D LiDAR measurement with

a maximum scan range of 80 m, scan angle of 190 deg, and

scan angle resolution of 0.125 deg was simulated. White

noise is added to the measurement ranges and angles.

3) Laser-wise object recognition: Object recognition is

randomly performed for each measurement and its accuracy

is controlled. If the object recognition is successful, the

maximum probability of the corresponding class is set to

approximately 0.9 and the other probabilities are set to

-20
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Fig. 4. Simulation environment (left) and ground truth scan and object

recognition results (right). The non-static objects are categorized as an

unknown class.

approximately 0.05. If the object recognition fails, all the

probabilities are randomly set. Because the summation of

the randomly created discrete values is not to be one,

these values are normalized to keep the condition of the

probabilistic distribution.

B. Comparison methods

1) Likelihood field model (LFM): Equation (10) is used

to calculate the likelihood. Note that the object classes are

not used, which indicates that all the points of the map are

used for calculating the likelihood.

2) Semantic likelihood field model (SLFM): The object

recognition results are simply used in the method. If a mea-

surement is categorized as the i-th class object, equation (10)

is used. If a measurement is categorized as the unknown
class, equation (13) is used.

C. Simulation results

Figure 5 shows the simulation results. In the top, middle,

and bottom cases, the object recognition accuracy was set

to approximately 80 %, 50 %, and 20 %, respectively. The

figures from left-to-right are the object recognition results

and the likelihood distributions calculated using the LFM,

SLFM, and CPM, respectively. The likelihood distributions

were calculated around the ground truth, (dx, dy) = (0, 0).
Because the LFM does not use the object recognition

results, the likelihood calculation was not affected by the re-

sults. The SLFM was drastically affected by the object recog-

nition results. Because wrong object labels were assigned

to the measurement in the likelihood calculation using the

SLFM, the object maps used for calculating the measurement

model were not correctly selected. However, the CPM made

it possible to robustly calculate the likelihood distributions

to the segmentation accuracy degradation. In particular, the

CPM generated the likelihood distributions more accurately

than the LFM. These results showed that using the CPM

achieves robust and accurate likelihood calculations even

when environment and object recognition results are noisy.

The accompanying video shows the comparison using the

simulation.
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Fig. 5. Simulated scans, their object recognition results (left) and likelihood distributions around the ground truth, (dx, dy) = (0, 0), calculated using the

LFM, SLFM, and CPM, respectively. Object recognition accuracy was controlled and was set as approximately 80 %, 50 %, and 20 % in the top, middle,

and bottom cases, respectively.

VI. EXPERIMENTS WITH SEMANTICKITTI DATASET

A. Map building

The SemanticKITTI dataset includes the ground truth

trajectory of the vehicle. We first plotted the static object

points according to the ground truth trajectory and built the

semantic map. Note that we assumed that the ground surface

is flat.

B. Noise control input simulation

The SemanticKITTI dataset does not include motion data,

i.e., control input denoted as ut = (∆dt,∆θt). Hence, we

simulate odometry noise using the ground truth trajectory.

We first compute the differences of the distance and heading

angle, ∆d̂t and ∆θ̂t, between consecutive frames and then

add noise as

∆dt ∼ N (γdist∆d̂t, σ
2
dist), (16)

∆θt ∼ N (γangle∆θ̂t, σ
2
angle), (17)

where N (a, b2) is Gaussian with mean a and variance b2,

and γ and σ are arbitrary constants. These arbitrary constants

were set as γdist = 0.99, γangle = 1.01, σ2
dist = (0.01 m)

2
,

and σ2
angle = (0.01 deg)

2
. To simulate symmetric errors,

γdist and γangle are used.

C. Point cloud semantic segmentation

The SemanticKITTI dataset opens 11 sequences; however,

we used seven sequences for the validation because of mem-

ory limitation. The SS network is trained using sequences

except for the target sequence, i.e., 10 sequences are used

for the training.

D. Results

We compared the pose estimation accuracy of three PF-

based localization methods which, respectively, use the CPM,

LFM, and SLFM for the likelihood calculation. The CPM

is the proposed method. The LFM does not use the SS

results and is described in Section V-B.1. The SLFM simply



uses the SS results for calculating the likelihoods and is

described in Section V-B.2. To evaluate localization accuracy,

we compared the localization results of every frame with

the ground truth trajectory and measured the position and

yaw angle estimation errors on the xy plane over the whole

trajectory.

Table I lists the estimation errors, static points rate (SPR),

and SS accuracy (SSA). Here, the SPR and SSA are the

mean rate of the static objects and accuracy of the SS in one

LiDAR measurement.

From the estimation errors, it was observed that the pro-

posed method achieved the most accurate and precise pose

estimation. Although the SS accuracy was not usually high,

(in particular, the minimum accuracy was less than 50 % in

sequence 10), the pose estimation using the proposed method

worked robustly. However, the pose estimation accuracy

using the SLFM was not accurate.

In sequences 06 and 07, the SPRs are lower than those

of the other sequences, i.e., these sequences contain many

moving objects like cars. Because the LFM does not consider

any environment changes as described in equation (10),

its estimation accuracy was slightly degraded in these se-

quences. Particularly in sequence 06, the SS accuracy was

also low and the estimate using the SLFM did not work well.

However, the proposed method could accurately perform the

estimation in these sequences. From the experimental results,

we confirmed that the proposed method could accurately and

robustly perform localization even when the SS accuracy is

low and the environment is dynamic.

E. Drawbacks

Although the proposed method works better than other

methods, it has some drawbacks. The proposed method

requires large memory and more computational costs than the

others. Because several object maps are used in the proposed

method, the memory cost requirement for allocating the maps

is obviously larger than that of the LFM-based method.

The PF-based localization wastes more time in the likeli-

hood calculation process. If the number of particles are set to

M , the computational complexity of the process of LFM and

SLFM is O(M). However, the computational complexity of

the proposed method is O(M |C|), where |C| is the number

of the object classes.

Table II shows a comparison of the computational times of

the process in sequence 03. The proposed method required

considerably more time than the other methods. Addition-

ally, improving the computational speed by enhancing the

algorithms is difficult. To improve the speed, GPU imple-

mentation is necessary.

The proposed method also requires an object recognition

method which estimates the probabilistic distribution over

the object classes for each measurement. To address this

requirement, we used the DNN. However, using the DNN

also requires a large computational cost. Note that the results

shown in Table II do not include the processing time of

the DNN. Conditional random fields can be applied to such

object recognition [33]; however, its computation is also

inefficient because it requires an iterative process such as

loopy belief propagation [34] to estimate the probability.

Efficient probability estimation is also necessary for real-

time application of the proposed method.

VII. CONCLUSION

This paper has presented a localization method for lever-

aging laser-wise probabilistic object recognition. Supervised

learning, which provides the probabilities over the mea-

sured object classes, was integrated into the probabilistic

localization framework. The proposed method used Dirichlet

distribution to calculate the likelihood, making it possible

to cope with the uncertainty of object recognition. From

the experiments, we showed that (1) the proposed method

accurately generated likelihood distribution even when the

SS accuracy was inaccurate and (2) the estimation accuracy

using the proposed method was highest in the proposed

method than in LFM- and SLFM-based localization methods.

Because the computational cost of the proposed method

is quite large, our future work will focus on improving the

cost by applying GPU implementation and efficient object

recognition. In addition, we plan to leverage the semantics

for detection of localization failures as presented in [35].

ACKNOWLEDGMENT

This work was supported by JST COI under Grant JP-

MJCE1317 and KAKENHI under Grant 40786092.

REFERENCES

[1] E. Shelhamer, J. Long, and T. Darrell. Fully convolutional networks

for semantic segmentation. IEEE Transactions on Pattern Analysis

and Machine Intelligence, 39(4):640–651, 2017.

[2] V. Badrinarayanan, A. Kendall, and R. Cipolla. Segnet: A deep

convolutional encoder-decoder architecture for image segmentation.

IEEE Transactions on Pattern Analysis and Machine Intelligence,

39(12):2481–2495, 2017.

[3] L. Landrieu and M. Simonovsky. Large-scale point cloud semantic

segmentation with superpoint graphs. pages 4558–4567, 2017.

[4] A. Dewan, G. L. Oliveira, and W. Burgard. Deep semantic classifica-

tion for 3D LiDAR data. In Proceedings of the IEEE/RSJ International

Conference on Intelligent Robots and Systems, pages 3544–3549,

2017.

[5] J. Schönberger, M. Pollefeys, A. Geiger, and T. Sattler. Semantic

visual localization. In Proceedings of the IEEE/CVF Conference on

Computer Vision and Pattern Recognition, pages 6896–6906, 2018.

[6] E. Stenborg, C. Toft, and L. Hammarstrand. Long-term visual

localization using semantically segmented images. pages 6484–6490,

2018.

[7] V. Vaquero, K. Fischer, F. Moreno-Noguer, A. Sanfeliu, and S. Milz.

Improving map re-localization with deep ‘movable’ objects segmen-

tation on 3D LiDAR point clouds. arXiv:1910.03336, 2019.

[8] X. Chen, A. Milioto, E. Palazzolo, P. Giguère, J. Behley, and C. Stach-

niss. SuMa++: Efficient LiDAR-based semantic SLAM. Proceedings

of the IEEE/RSJ International Conference on Intelligent Robots and

Systems, pages 4530–4537, 2019.

[9] A. Zaganidis, A. Zerntev, T. Duckett, and G. Cielniak. Semantically

assisted loop closure in SLAM using NDT histograms. In Proceedings

of the IEEE/RSJ International Conference on Intelligent Robots and

Systems, pages 4562–4568, 2019.

[10] J. Behley, M. Garbade, A. Milioto, J. Quenzel, S. Behnke, C. Stach-

niss, and J. Gall. SemanticKITTI: A dataset for semantic scene

understanding of LiDAR sequences. In Proceedings of the IEEE/CVF

International Conference on Computer Vision, 2019.

[11] P. J. Besl and N. D. McKay. A method for registration of 3-d shapes.

IEEE Transaction on Pattern Analysis and Machine Intelligence,

14(2):239–256, 1992.



TABLE I

POSITION / ANGLE ESTIMATION ERRORS USING THE CPM, LFM, AND SLFM, STATIC POINTS RATE (SPR), AND SEMANTIC SEGMENTATION

ACCURACY (SSA). UNITS OF THE POSITION AND ANGLE ESTIMATION ERRORS ARE CENTIMETERS AND DEGREES, RESPECTIVELY.

Sequence 03 04 05 06 07 09 10

Ave 7.34 / 0.20 6.64 / 0.14 5.42 / 0.15 8.98 / 0.20 6.56 / 0.18 7.55 / 0.18 5.52 / 0.17

CPM Std 5.28 / 0.18 5.28 / 0.12 3.38 / 0.15 6.91 / 0.19 5.01 / 0.20 5.13 / 0.17 3.70 / 0.15

Max 42.34 / 1.12 36.90 / 0.74 28.36 / 1.62 67.07 / 1.36 39.71 / 1.71 69.89 / 1.17 32.91 / 1.19

Ave 11.12 / 0.26 10.60 / 0.29 7.40 / 0.18 13.88 / 0.32 14.55 / 0.26 9.63 / 0.22 5.93 / 0.18

LFM Std 7.31 / 0.25 9.98 / 0.24 5.30 / 0.17 14.66 / 0.35 7.52 / 0.24 7.88 / 0.22 3.96 / 0.17

Max 44.50 / 1.44 73.11 / 1.27 44.20 / 1.52 133.60 / 3.54 56.09 / 1.83 120.20 / 3.89 45.78 / 1.25

Ave 11.00 / 0.33 14.74 / 0.26 9.29 / 0.26 17.88 / 0.42 11.23 / 0.33 14.06 / 0.39 9.78 / 0.33

SLFM Std 7.33 / 0.28 12.24 / 0.24 6.80 / 0.25 13.56 / 0.40 7.52 / 0.29 10.86 / 0.35 7.02 / 0.30

Max 43.90 / 1.52 77.01 / 1.88 65.46 / 2.44 100.39 / 2.69 64.94 / 2.20 104.53 / 3.32 86.76 / 2.29

Ave 95.92 % 95.74 % 96.64 % 89.26 % 87.08 % 93.79 % 95.92 %

SPR Std 2.46 % 2.96 % 2.30 % 6.85 % 7.81 % 4.74 % 3.88 %

Min 84.75 % 80.62 % 89.79 % 59.37 % 57.97 % 65.66 % 70.22 %

Max 99.66 % 99.11 % 98.81 % 97.48 % 98.33 % 99.29 % 99.67 %

Ave 76.90 % 77.35 % 79.04 % 74.32 % 85.30 % 78.61 % 75.21 %

SSA Std 6.50 % 5.65 % 4.07 % 6.76 % 4.67 % 5.30 % 5.80 %

Min 60.33 % 60.17 % 63.49 % 54.71 % 70.51 % 57.36 % 44.80 %

Max 92.10 % 91.02 % 89.84 % 86.16 % 95.07 % 90.41 % 85.99 %

TABLE II

COMPUTATION TIMES IN MILLISECONDS.

Ave Std Min Max

CPM 101.9 4.6 83 117

LFM 16.1 1.0 9 19

SLFM 18.8 1.4 13 23

[12] P. Biber and W. Straßer. The normal distributions transform: A new

approach to laser scan matching. In Proceedings of the IEEE/RSJ

Intelligent Robots and Systems, pages 2743–2748, 2003.

[13] N. Akai, K. Inoue, and K. Ozaki. Autonomous navigation based on

magnetic and geometric landmarks on environmental structure in real

world. Journal of Robotics and Mechatronics, 26(2):158–165, 2014.

[14] N. Akai, L. Y. Morales, T. Yamaguchi, E. Takeuchi, Y. Yoshihara,

H. Okuda, T. Suzuki, and Y. Ninomiya. Autonomous driving based

on accurate localization using multilayer LiDAR and dead reckoning.

In Proceedings of the IEEE International Conference on Intelligent

Transportation Systems, pages 1147–1152, 2017.

[15] M. Magnusson, A. Lilienthal, and T. Duckett. Scan registration

for autonomous mining vehicles using 3D-NDT. Journal of Field

Robotics, 24(10):803–827, 2007.

[16] S. Kato, E. Takeuchi, Y. Ishiguro, Y. Ninomiya, K. Takeda, and

T. Hamada. An open approach to autonomous vehicles. IEEE Micro,

35(6):60–68, 2015.

[17] N. Akai, L. Y. Morales, E. Takeuchi, Y. Yoshihara, and Y. Ninomiya.

Robust localization using 3D NDT scan matching with experimentally

determined uncertainty and road marker matching. In Proceedings of

the IEEE Intelligent Vehicles Symposium, pages 1357–1364, 2017.

[18] A. Zaganidis, M. Magnusson, T. Duckett, and G. Cielniak. Semantic-

assisted 3D normal distributions transform for scan registration in

environments with limited structure. In Proceedings of the IEEE/RSJ

International Conference on Intelligent Robots and Systems, pages

4064–4069, 2017.

[19] A. Zaganidis, L. Sun, T. Duckett, and G. Cielniak. Integrating

deep semantic segmentation into 3-D point cloud registration. IEEE

Robotics and Automation Letters, 3(4):2942–2949, 2018.
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