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A car driver’s cognitive distraction is a main factor behind car accidents. One’s state of mind is subconsciously exposed as a reaction
reflecting it by external stimuli. A visual event that occurs in front of the driver when a peripheral vehicle overtakes the driver’s
vehicle is regarded as the external stimulus. We focus on temporal relationships between the driver’s eye gaze and the peripheral
vehicle behavior.The analysis result showed that the temporal relationships depend on the driver’s state. In particular we confirmed
that the timing of the gaze toward the stimulus under the distracted state induced by amusic retrieval task using an automatic speech
recognition system is later than that under a neutral state while only driving without the secondary cognitive task. This temporal
feature can contribute to detecting the cognitive distraction automatically. A detector based on a Bayesian framework using this
feature achieves better accuracy than one based on the percentage road center method.

1. Introduction

Driver distraction is a diversion of attention away from activi-
ties critical for safe driving toward a competing activity [1]
and is a large risk factor that causes accidents [2]. Note that
distraction differs from fatigue [3] which is defined as a
state that disables one from continuing the activity [4]. Many
researchers have developed driver distraction monitoring
systems to maintain safety while driving by considering
different types and levels of distraction [3]. The National
Highway Traffic Safety Administration (NHTSA) classifies
distractions into (1) cognitive distraction, (2) visual distrac-
tion, (3) auditory distraction, and (4) biomechanical distrac-
tion from the viewpoint of the driver’s functionality [2].
Cognitive distraction can be considered as an internal state
of the driver. It is difficult to sense this from outside. The
other distractions are external factors that disturb the activity
and can be observed more easily. We focus on cognitive
distraction and seek novel findings to automatically detect it.

In the past few decades, a number of methods for detect-
ing distraction have been proposed [3].Themethods fall into
the following five categories based on the types of measures:
(1) subjective report measures, (2) driver biological mea-
sures, (3) driving performance measures, (4) driver physical

measures, and (5) hybrid measures. Among these measures,
subjective reportmeasures and driver biologicalmeasures are
not suitable under real driving conditions. Driving perfor-
mance measures as indicated by steering, braking behavior,
and so forth are suitable for detecting visual distraction [5].
Even if a system can detect such overt behaviors that aremore
directly linked with risk, for maintaining safety, the timing
may be too late to provide support to the driver after the
detection.

Eye-gaze measure, which is one of the driver’s physical
measures, is a useful measurement of visual distraction
especially for In-Vehicle Information System (IVIS) and
Advanced Driver Assistance System (ADAS) assessment as
specified in the existing standards ISO 15007-1 [6] and ISO/TS
15007-2 [7], and it has the potential for capturing symptoms
of cognitive distraction [8]. An eye-gaze pattern could be
used to discriminate driving while performing a secondary
cognitive task from driving only [9]. Drivers under cognitive
distraction had fewer saccades per unit time, which was
consistent with less exploration of the driving environment
[10]. Saccades may be a valuable index of mental workload
[11]. Miyaji et al. reported that the standard deviations of eye
movement and head movement could be suitable for detect-
ing cognitive distraction that caused gaze concentration and
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slow saccades when drivers looked at the roadway [12].
Kircher et al. indicated the percentage of time that the driver
spent observing the road ahead, which is called the percent-
age road center (PRC) of gaze direction, was more than 92%
under cognitive distraction in a field study [13]. Johansson
et al. have reviewed the existing gaze-based techniques and
metrics for analyzing visual and cognitive distractions [8].

These approaches on driver’s physics mainly measured
only driver’s gaze toward the road ahead or in-vehicle static
objects without any regard for the peripheral traffic environ-
ment, which includes many scattering visual stimuli, or mea-
sured a rough correlation between spatial features of the gaze
and the environment.They also need a long-term evaluation.
To more flexibly support the driver, an improvement in the
time resolution is required for the detection.We take account
of short-term dynamics of cross media to detect cognitive
distraction. In the field of human-computer interaction, some
researchers have investigated a state of mind by analyzing the
temporal relationships between eye movements and visual
changes in the user interface [14–16]. The latent state is
subconsciously exposed as a reaction reflecting it by external
stimuli [17]. In controlled settings such as using a driving
simulator, the detection response task (DRT) is an upcoming
method of measuring visual and cognitive distractions [18–
21], which asks the subject to respond via a device such as a
button to visual, tactile, or acoustic stimuli.The response time
relates to the distraction. However, it is difficult to give actual
drivers on the road the task without disturbing the safety
driving. In this work, our target is the temporal relationships
between driver’s gaze and peripheral vehicle behavior in a
real driving situation. In particular it is the timing of the gaze
toward the visual stimuli caused by the peripheral vehicle.

2. Analysis of Temporal Relationships
between Driver Gaze and Peripheral
Vehicle Behavior

2.1. Timing of Gaze Reaction to Overtaking Event. To analyze
the temporal relationships, we focus on peripheral vehicle
behaviors with a high level of visibility for the driver. When
a peripheral vehicle (called the overtaking vehicle) overtakes
the host vehicle driven by the driver, a visual change that
occurs in front of the field of view can attract the driver’s
attention. We define this overtaking event as our target of
analysis.The event has a base-point time 𝑡

0
(= 0), a beginning

time 𝑡
𝑏
(= 𝑡
0
− 𝑇
𝑑
/2), and an ending time 𝑡

𝑒
(= 𝑡
0
+ 𝑇
𝑑
/2). 𝑡
0
is

the time when the front position 𝑦
𝑜
of the overtaking vehicle

in the direction of forward movement becomes equal to the
front position 𝑦

ℎ
of the host vehicle. 𝑇

𝑑
is the duration of the

overtaking event, which is a configuration parameter of the
analysis and set in Section 4.2. Figure 1 shows the overtaking
event.

We define saccade timing 𝑡
𝑐
and gaze timing 𝑡

𝑔
. The

former is the timewhen the driver turns gaze toward the over-
taking vehicle, whereas the latter is the time while the driver
fixates the overtaking vehicle. The temporal relationships
characterizing the gaze reaction to the overtaking vehicle are
the time differences between the saccade timing 𝑡

𝑐
or the gaze

Time

Host
vehicle

Overtaking
vehicle

te(= t0 + Td/2)tb(= t0 − Td/2) t0(= 0)
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Td

Figure 1: Overtaking event.

timing 𝑡
𝑔
and the base-point time 𝑡

0
of the event. Figure 2

shows the timing structure.

2.2. Hypothesis. Some researchers have investigated the cor-
relations between gaze directions and traffic object positions,
for example, road curvature, oncoming traffic, road signs, and
pedestrians [22–24], and have shown that the correlations are
high under the neutral state while driving only. Most of the
researchers, however, dealt mainly with spatial correlation.
On the temporal relationship between visual attention and
external stimuli, Posner revealed that covert attention to
them decreases the reaction time, and, conversely, distraction
increases it [25]. We therefore propose the following hypoth-
esis: the timing of when a driver gazes toward the overtaking
event under a state of cognitive distraction is later than that
under a neutral state.

3. Real-World Driving Database

We analyze a part of a database collected using the “NUDrive
Vehicle” in Nagoya, Japan [26].

3.1. Data-Collection Vehicle. The “NUDrive Vehicle” was
designed to synchronously record multimedia signals of
driver performance (gas pedal, brake pedal, steering angle,
velocity, acceleration, and position of the car), intervehicular
distance, biological signals, videos, and audio signals. Various
external sensors were mounted on a Toyota Hybrid Estima
with a 2360 cc engine and automatic transmission and steer-
ingwheel on the right side. Figure 3 shows the data-collection
vehicle. All the sensors used for recording were commercially
available.

3.2. Participants. A total of 30 participants (10 males and 20
females) took part in the experiment. They were, on average,
39.0 years old (range of 29–52 years) and had held a driver’s
license for a mean period of 18.6 years (range of 8–32 years).
They received 5000 Japanese yen as compensation for their
participation.

3.3. Procedure. The participants first drove for a few minutes
to get used to the vehicle and the sensors. Signals recorded
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Figure 2: Timing of the driver’s gaze toward the overtaking vehicle.

during the initial period were not used in this work. The
experimenter monitored the experiment from the rear seat
and indicated the route to the driver. During a particular
period of driving, the participant performed a secondary
hands-free task of retrieving and playing songs from a list of
635 titles from 248 artists using an automatic speech recogni-
tion system [27]. The secondary task artificially induced the
cognitive distraction state. The experimenter instructed the
participant to retrieve as many songs as possible; accordingly,
within around 30 s of successfully retrieving each song, the
participant had to retrieve another song. All experiments
were performed on two-or three-lane highways. The exper-
imental route was the same for all participants.

3.4. Measures. In this work, we analyzed the intervehicular
distance measured by laser scanners and the driver’s gaze
direction extracted from the recorded video. The following
are the details of the analyzed data and omit the account of
other data.

3.4.1. Intervehicular Distance Scanning. Two laser scan-
ners (front: RIEGL LMS-140i-80; rear: RIEGL LMS-Q120i),
mounted on the front and back of the host vehicle shown in
Figure 3, provided geometric information about the periph-
eral environment of the vehicle. The laser scanners covered
80-degree arcs at both front and back of the vehicle, to an
effective range of about 100m to the front and 55m to the rear,
but had blind areas at the left and right sides of the vehicle.
The data were acquired at a sample frequency of 10Hz. For
tracking peripheral vehicles in the blind areas, we applied a
Kalman filter to the data [28]. The dynamics of their position
and velocity relative to the host vehicle could be estimated
even if they were outside the laser range.The position was on
a horizontal plane whose coordinate system was comprised
of a moving directional axis 𝑦 and its orthogonal axis 𝑥 with
origin (𝑥

0
, 𝑦
0
) at the center of the frontal laser scanner. We

did not take velocity into account in this work. The practical
area to analyze is limited to a rectangular area with a length of
80m, −40 ≤ 𝑦 ≤ 40, and a width of 9.9m, −4.95 ≤ 𝑥 ≤ 4.95.

3.4.2. Video Recording. The driver’s face was captured by
a camera (Sony 1/2 inch CCD video camera DXC-200A)
mounted on the dashboard. The data were acquired at a
resolution of 692 pixels in width and 480 pixels in height at a
sample frequency of 29.4 fps.

Figure 3: Data-collection vehicle.

3.4.3. Driver Gaze Tracking. The driver’s gaze direction was
manually labeled using ELAN, (http://www.lat-mpi.eu/tools/
elan) which is a tool for the creation of complex annotations
on video and audio resources, by an annotator. We prepared
five gaze labels according to ISO 15007-1 [6] and three
additional labels to detect gaze toward overtaking vehicles
and toward upper traffic signs that could be extracted from
the low-resolution video as follows:

(𝑔
0
) right side (gaze toward right mirror and right window
by head turning);

(𝑔
1
) right front (gaze rightward from front, including gaze
toward overtaking vehicles in the right lane);

(𝑔
2
) rear (gaze toward rear-view mirror);

(𝑔
3
) front (gaze to road scene ahead, the reference direc-
tion);

(𝑔
4
) left side (gaze toward left mirror and left window by
head turning);

(𝑔
5
) left front (gaze leftward from front, including gaze
toward overtaking vehicles in the left lane);

(𝑔
6
) up (gaze upward from front, including gaze toward
upper traffic signs);

(𝑔
7
) down (gaze downward from front, including gaze
toward instrument panel).

The annotator detected the beginning of the saccade of each
gaze behavior as the beginning of interval with the gaze label.
We consider that the gaze direction can be labeledmore stably
and accurately by using commercially supplied eye-tracking
systems (e.g., FaceLab). Figure 4 shows a sample set of face
images that were given each label.

4. Timing Analysis of Driver Gaze under
Cognitive Distraction toward Peripheral
Vehicle Behavior

4.1. Extracting Overtaking Events. We extracted 274 overtak-
ing events from the intervehicular distance data of the neutral
task (task conditionC

𝑁
) and 81 events from that of themusic-

retrieval task (task conditionC
𝑀
).
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(a) Left-front (b) Front (c) Up (d) Right-front

(e) Left-side (f) Rear (g) Down (h) Right-side

Figure 4: Sample set of gaze labels and face images.

4.2. Clustering of Peripheral Environment Data. We do not
analyze traffic simulation data, we but focus on real traffic
data. There are some peripheral vehicles in addition to the
overtaking vehicle that act as triggers of random events in
a real traffic scene. The peripheral vehicles are the visual
stimuli. From the standpoint of the visual target search task,
the overtaking vehicle and the other peripheral vehicles are
regarded as target and visual distractors, respectively. The
performance of the target search task depends on the traits
of the visual distractors [29]. In this work, a trait of the
peripheral environment needs to be defined. We classify the
traffic scenes spatiotemporally according to time while the
peripheral vehicles exist in the subperipheral area within the
interval of the overtaking event, 𝑇

𝑑
. The peripheral area is

divided into six subareas corresponding to the six gaze labels
𝑔
𝑗
(𝑗 = 0, . . . , 5). Figure 5 shows the six subperipheral areas.

Each of the six areas is assigned a Boolean variable 𝑎
𝑗
. A

vector, e, comprises the six variables: e = (𝑎
5
, 𝑎
4
, 𝑎
3
, 𝑎
2
, 𝑎
1
, 𝑎
0
),

which represents the trait of the peripheral environment. In
this work, if the cumulative duration while the peripheral
vehicles exist in subperipheral area 𝑎

𝑗
goes over 50% of the

targeted time interval, 𝑎
𝑗
= 1; otherwise, 𝑎

𝑗
= 0. We focus

on the dynamics of the driver’s gaze on the base point of
the overtaking event, 𝑡

0
, as a reference point of analysis.

Therefore, the interval of the overtaking event, 𝑇
𝑑
, is divided

into the first half e
1
from 𝑡

𝑏
to 𝑡
0
and the second half e

2
from

𝑡
0
to 𝑡
𝑒
. Practically, we set 𝑇

𝑑
to 10 s (𝑡

0
= 0, 𝑡
𝑏
= −5, 𝑡

𝑒
= 5(s))

as a sufficient time duration to analyze in consideration of
the analysis area with the length of 80m and the maximum
velocity difference (=40.9 km/h) between the host vehicle and
the overtaking vehicles in the area.

From all data including the overtaking events: 274 events
forC
𝑁
and 81 events forC

𝑀
, we could not extract uniformly

distributed vectors e
1
and e

2
. In addition, we eliminated

some traffic scenes along curves and including lane changes
because they would induce a specific gaze behavior. Adequate
samples were extracted for two types of state transitions of
peripheral environment as follows: environmental state tran-
sition E

𝐴
from e

1
= (0, 0, 0, 0, 0, 1) to e

2
= (0, ∗, 0, ∗, 1, ∗),

75 events for task C
𝑁

and 23 events for task C
𝑀
, and

a0, g0a4, g4

a2, g2

a3, g3 a1, g1a5, g5

3.3m 3.3m 3.3m

40.0m

40.0m

Figure 5: Definition of six subperipheral areas.

environmental state transition E
𝐵
from e

1
= (0, 0, 0, 0, 1, 1)

to e
2
= (0, ∗, 0, ∗, 1, ∗), 43 events for task C

𝑁
and 13 events

for taskC
𝑀
. 43.0% forC

𝑁
and 44.4% forC

𝑀
of all overtaking

events were fallen into either E
𝐴
or E
𝐵
. “∗” denotes any

binary value. The former represents when the overtaking
vehicle runs in the right lane and the other peripheral vehicles
do not exist for more than 2.5 s (=50% of 𝑇

𝑑
/2) before it

overtakes the host vehicle, whereas the latter represents when
the overtaking vehicle also runs in the right lane and a
peripheral vehicle exists in the right-front area for more than
2.5 s before it overtakes the host vehicle. We analyze the rela-
tionships between the extracted events for two environmental
conditionsE

𝐴
and E

𝐵
and the gaze data below.

4.3. Testing of Hypothesis Based on Temporal Gaze Distribu-
tion. The relative frequency distributions of the gaze direc-
tions (temporal gaze distributions) that were measured in the
peripheral environmentE

𝐴
varied in terms of time, as shown

in Figure 6. Since the relative frequency of the right-front
gazes increased quickly after the base point of the overtaking
event, 𝑡

0
, regardless of the task, the participants frequently

gazed toward the overtaking vehicle in the right lane when
the number of visual distractors was small. We verified
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Figure 6: Time variations of relative frequency distributions of gaze
directions that were measured in the peripheral environment E

𝐴
.

the hypothesis (see Section 2.2) of the temporal difference
between the relative frequency distributions for the music-
retrieval task C

𝑀
and the neutral task C

𝑁
by performing

a statistical test. Let us limit the interval for testing to the
time from 𝑡

𝑠
= 𝑡
0
(= 0) to 𝑡

𝑓
= 2(s) following the work

of Merat et al. [19]. The average saccade timings 𝑡
𝑐
for the

two conditions C
𝑁

and C
𝑀

were 0.82 s and 1.07 s (SD =
0.52 s and 0.42 s), respectively.The saccade timing for theC

𝑁

condition was shorter than that for theC
𝑀
condition, but we

did not obtain adequate samples for performing any statistical
test to the saccade timings. The average gaze timings 𝑡

𝑔
for

the two conditions C
𝑁
and C

𝑀
were 1.09 s and 1.46 s (SD

= 0.51 s and 0.43 s), respectively. The two relative frequency

distributions within the limited interval had normality and
homoscedasticity. The 𝑡-test revealed that the gaze timing for
the C

𝑁
condition was significantly shorter than that for the

C
𝑀
condition, 𝑡(183) = −3.76, 𝑃 < .001.
In contrast, Figure 7 shows that the participants rarely

looked at the overtaking vehicle in the peripheral environ-
ment E

𝐵
while performing the music-retrieval task C

𝑀
,

whereas they followed the same behavior as E
𝐴

for the
neutral taskC

𝑁
. In the same manner asE

𝐴
, the average gaze

timings 𝑡
𝑐
for the two conditions C

𝑁
and C

𝑀
were 0.88 s

and 1.25 s (SD = 0.67 s and 0.60 s), respectively. The saccade
timing for the C

𝑁
condition was shorter than that for the

C
𝑀

condition, but we did not obtain adequate samples for
performing any statistical test to the saccade timings. The
average gaze timings 𝑡

𝑔
for the two conditions C

𝑁
and C

𝑀

were 0.93 s and 1.34 s (SD= 0.51 s and 0.45 s), respectively.The
𝑡-test revealed that the gaze timing for theC

𝑁
condition was

significantly shorter than that for the C
𝑀
condition, 𝑡(83) =

−3.1, 𝑃 < .005. These results support our hypothesis but are
limited to evaluation for two conditions, E

𝐴
and E

𝐵
, of the

peripheral environment.

5. Detection of Driver Distraction

5.1. Discrimination between Distraction and Neutral State in a
Bayesian Framework. To identify the class label (distraction,
i.e.,C

𝑀
, or neutral, i.e.,C

𝑁
) of the driver state using the tem-

poral gaze distribution, we use a naive Bayesian framework as
follows:

𝑃 (𝐶
𝑡
| 𝐺
𝑡
,E
𝑡
) =
𝑃 (𝐶
𝑡
,E
𝑡
) 𝑃 (𝐺

𝑡
| 𝐶
𝑡
,E
𝑡
)

𝑃 (𝐺
𝑡
,E
𝑡
)

=
𝑃 (𝐶
𝑡
| E
𝑡
) 𝑃 (E

𝑡
) 𝑃 (𝐺

𝑡
| 𝐶
𝑡
,E
𝑡
)

𝑃 (𝐺
𝑡
,E
𝑡
)

,

(1)

where 𝑡 represents the time from when the host vehicle was
overtaken by the other vehicle, 𝐶

𝑡
represents whether a gaze

belongs to the distraction class at time 𝑡, that is, the binary
class label, 𝐺

𝑡
represents whether the direction of the gaze

is right-front, that is, gaze label, and E
𝑡
represents the con-

dition of the peripheral environment. One of the important
characteristics of the Bayesian framework is the capability to
infer the state of an unobserved variable, given the state of the
observed variables. In our case, we want to infer the driver’s
internal state, that is, cognitive distraction, given the gaze data
and the peripheral environment.

To make a decision as to the class of discrimination is
assigned to the gaze data, the equation can be iterated over
a time interval related to an overtaking event. We can then
accumulate the computed posteriors and choose the class
of driver state with greater score based on Maximum a
Posteriori (MAP) as follows:

𝑄 (𝐶 | 𝐺,E) =
𝑡𝑓

∑

𝑡=𝑡𝑠

𝑃 (𝐶
𝑡
| 𝐺
𝑡
,E
𝑡
) , (2)

𝑆 = argmax
𝐶

𝑄 (𝐶 | 𝐺,E) . (3)
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directions that were measured in the peripheral environment E

𝐵
.

In this work, the priors 𝑃(𝐶
𝑡
| E
𝑡
) and 𝑃(E

𝑡
) are assumed

as uniform, that is, noninformative prior distributions, and
𝐶
𝑡
and E

𝑡
are regarded as binary variables not depending on

time 𝑡: 𝑃(𝐺
𝑡
| 𝐶,E) ≃ 𝑃(𝐺

𝑡
| 𝐶
𝑡
,E
𝑡
), E = (e

1
, e
2
). Therefore,

we can apply the temporal gaze distribution extracted in
Section 4.3 to 𝑃(𝐺

𝑡
| 𝐶,E).

5.2. Results. We matched the class label computed from
equation (3) with the true label to discriminate between
distraction stateC

𝑀
and neutral stateC

𝑁
. The experimental

data were the same as the data for analysis of gaze timing (see
Section 4): 75 events for C

𝑁
and 23 for C

𝑀
in E
𝐴
, 43 events

forC
𝑁
, and 13 forC

𝑀
inE
𝐵
. We applied leave-one-out cross

validation to obtain the discrimination accuracy.

Table 1 shows the accuracies of the two-class discrimina-
tion. As this is for testing our hypothesis (see Section 4.3), we
limited the time interval for discrimination to from 𝑡

𝑠
= 𝑡
0
(=

0) to 𝑡
𝑓
= 2(s). Here, we employed a baseline method based

on the percentage road center (PRC) [13], that is, proportion
of total gaze duration toward road scene ahead to total time of
sample events, which detected C

𝑀
and C

𝑁
by thresholding

PRC at 𝜋
𝑟
; that is, if PRC was larger than 𝜋

𝑟
, the method

determined the data as distraction state C
𝑀
; otherwise,

neutral stateC
𝑁
was assigned. The thresholds 𝜋

𝑟
for E
𝐴
and

E
𝐵
were set to 79.0%, by searching for an equal rate between

detection ofC
𝑀
andC

𝑁
. We can confirm that the proposed

method performed more accurately than the baseline one.

6. Discussion

We obtained better test results supporting our hypothesis
and confirmed that the proposed discriminator performed
more accurately than the baseline one. This approach takes
advantage of the shorter time needed to detect cognitive
distraction because it focuses on only the important scene
for the detection but needs to trigger the gaze reaction to
the overtaking event. The Bayesian rule-based method excels
in application. It can be naturally integrated into the state-
of-the-art method based on Bayesian networks using hybrid
measures [30].

Figures 6 and 7 also suggest another difference between
two tasks C

𝑀
and C

𝑁
. Note the frequency of gazing to

a downward direction, that is, down. We consider that
the participants frequently looked at the speedometer or
navigation system while performing the neutral task. This
behavior agrees with the prior findings of PRC [13]. In the
temporal section without the overtaking event, PRC needs to
be addressed to detect cognitive distraction.

Here, let us compare the average timing of the gaze
to right front in condition E

𝐴
with that in condition E

𝐵

(see their values in Section 4.3). We can confirm that the
latter was slightly shorter than the former. In condition E

𝐵
,

there was a vehicle that preceded the overtaking vehicle. The
participants might still focus their attention on the preceding
vehicle or right-front area and then effectively react to the next
overtaking event.The event did not cause inhibition of return
[31], which retards their reaction.

These results were verified under only two limited envi-
ronmental conditions, that is, E

𝐴
and E

𝐵
, of peripheral

vehicles because we could not analyze enough experimental
data.We need to increase the number of clusters of peripheral
environment data for wide-ranging analysis and to model
the dynamics of peripheral vehicles based on, for example,
time to collision (TTC), velocity, acceleration, and interaction
among vehicles for deeply analyzing the temporal relation-
ships and increasing the discrimination accuracy. We also
have to analyze the other secondary tasks and differences
among individuals.

7. Conclusions

Thedynamics of the external environment can elicit reactions
reflecting the human internal state, that is, make the latent
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Table 1: Two-class discriminant accuracies.

Peripheral environment E
𝐴

Peripheral environment E
𝐵

Distraction (C
𝑀
) Neutral (C

𝑁
) Distraction (C

𝑀
) Neutral (C

𝑁
)

Proposed method 66.7% 64.7% 75.0% 61.5%
Baseline method (PRC) 50.0% 52.9% 50.0% 53.8%

state explicit. We showed that the temporal factor, that is,
timing, of a reaction is important for understanding the state
by focusing on cognitive distraction in a car-driving situation.
The concrete contribution of this paper is twofold. First,
we obtained test results supporting our hypothesis that the
timing of when a driver gazes toward the overtaking event
under cognitive distraction is later than that under the neutral
state. Second, we confirmed that a Bayesian-based detection
of distraction using the temporal gaze distribution performed
more accurately than the PRC-based one.The findings of this
work should be generalized through additional analysis in
futurework.Wehave built a large database of 500 drivers [26].
The generalized findingswill suggest a risk of voice interactive
navigation (hands-free navigation) using automatic speech
recognition and a novel testing scenariowithout driver’s extra
workload for driver information system in real driving situ-
ation to the Alliance of Automobile Manufacturers (AAM)
guidelines [32]. To put our approach into practical use, we
will refer to peripheral vehicle-tracking systems based on
computer vision techniques [24, 33] and replace the laser
scanner with a camera-based system.
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