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PAPER

Vote Distribution Model for Hough-Based Action Detection

Kensho HARA†a), Student Member, Takatsugu HIRAYAMA†,††b), Member, and Kenji MASE†c), Fellow

SUMMARY Hough-based voting approaches have been widely used to
solve many detection problems such as object and action detection. These
approaches for action detection cast votes for action classes and positions
based on the local spatio-temporal features of given videos. The voting
process of each local feature is performed independently of the other lo-
cal features. This independence enables the method to be robust to occlu-
sions because votes based on visible local features are not influenced by
occluded local features. However, such independence makes discrimina-
tion of similar motions between different classes difficult and causes the
method to cast many false votes. We propose a novel Hough-based action
detection method to overcome the problem of false votes. The false votes
do not occur randomly such that they depend on relevant action classes.
We introduce vote distributions, which represent the number of votes for
each action class. We assume that the distribution of false votes include
important information necessary to improving action detection. These dis-
tributions are used to build a model that represents the characteristics of
Hough voting that include false votes. The method estimates the likelihood
using the model and reduces the influence of false votes. In experiments,
we confirmed that the proposed method reduces false positive detection and
improves action detection accuracy when using the IXMAS dataset and the
UT-Interaction dataset.
key words: action detection, Hough transform, Hough forests

1. Introduction

Automatically recognizing and detecting human action in
videos are widely used in applications such as surveillance
systems, video indexing, and human computer interaction.
Action recognition methods classify an action throughout
an entire video. A typical approach uses a holistic represen-
tation of a video scene, such as bag-of-words of local fea-
tures [1]. Action detection methods search for all instances
of action in a scene. Besides classifying actions, these meth-
ods localize actions both in space and time. Most applica-
tions deal with videos that contain multiple instances of ac-
tion and detect each instance.

Most action detection methods are based on a sliding-
window approach [2]–[10] or Hough transform [11]–[15].
Sliding-window approaches classify actions in each sub-
volume of a video sequence while changing the spatio-
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temporal position of that sub-volume. By contrast, Hough-
based approaches extract the local features of a video and
then cast votes for action classes and spatio-temporal posi-
tions based on each local feature. The local maxima of vot-
ing scores indicate possible detected actions. Here, the vot-
ing scores are calculated by accumulating the votes at each
position based on all local features. Compared with sliding
window approaches, Hough-based approaches are robust to
occlusions. Votes based on visible local features are not af-
fected by occluded local features because the voting process
of each local feature is performed independently from oth-
ers. Our study focuses on Hough-based action detection.

The independence of the voting process causes a prob-
lem. If a similar local motion exists between different action
classes, discriminating such motions in the voting process is
difficult. It naturally votes for those relevant action classes.
Therefore, Hough-based approaches are prone to cast many
false votes for wrong action classes and, thus, detect many
false positives.

In this study, we propose a novel method for overcom-
ing the false-votes problem by examining the cause of false
votes. Similar local features cause false votes. The false
votes do not occur randomly such that they depend on rel-
evant action classes. Hough-based approaches essentially
cast votes not only for a certain class but also for other spe-
cific classes even when only an action is performed. These
characteristics are different according to each class and do
not necessarily correlate. We assume that the distribution
of false votes include important information necessary to
improving action detection. Our proposed method learns
these characteristics of Hough voting. We introduce vote
distributions, which represent the voting scores for each ac-
tion class, as shown in Fig. 1. Our proposed method builds
a model that represents those characteristics based on vote
distributions. The method estimates the likelihood using the
model and reduces the influence of false votes.

The main contribution of this paper is that our vote
distribution model improves the performance of Hough-
based action detection by reducing the influence of false
votes caused by similar local motion between different ac-
tion classes. Experimental results in this paper support the
assertion.

The remainder of this paper is organized as follows.
Section 2 reviews related studies and Sect. 3 describes con-
ventional Hough-based action detection. We explain our
proposed method in Sect. 4 and analyze our experimental
results in Sect. 5. Section 6 concludes the study.

Copyright c© 2016 The Institute of Electronics, Information and Communication Engineers
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Fig. 1 Hough voting and vote distribution. (a) This frame is an example
of Get Up class. A Hough-based approach casts votes based on local fea-
tures of the frame. (b) The votes can be visualized as 2D slices of voting
spaces. The pixel values of the slices mean the voting scores of the votes
for each action class. (c) A vote distribution describes the voting scores for
each action class at a given position. This vote distribution is calculated at
the ground truth position indicated by the circles.

2. Related Work

In this section, we review studies related to this research.
Related work includes object- and action detection methods.
The object detection methods motivate many of the action
detection methods.

As mentioned in previously, action detection meth-
ods are divided into sliding-window and Hough-based ap-
proaches. Motivated by the success of sliding-windows
for object detection [16], many sliding-window-based action
detection methods exist for domain adaptation [3], action
descriptors [4], action representation [10], and discrimina-
tive representation in crowded scenes [2], [5]. Because the
search spaces of action detection are larger than those of ob-
ject detection, some research has attempted to reduce com-
putational costs by using branch-and-bound [6] and coarse-
to-fine searches.

In contrast to these sliding-window-based approaches,
Hough-based approaches, which are the main focus of this
research, avoid exhaustive searches in spaces and are robust
to occlusions. Hough transform was initially proposed for
line detection and then extended for general object detec-
tion [17]. Leibe et al. proposed the implicit shape model
(ISM) that is now a commonly used Hough-based object
detection method [18]. ISM generates a codebook of local
features. It then uses the codebook to casts votes for object
positions based on local features extracted from an image.
Some studies have applied the ISM framework to action de-
tection [11]–[15].

Hough-based approaches possess the problem of false
votes. Many studies have been conducted that consider this
problem for both object and action detection. One approach
for overcoming the problem involves generating a discrim-
inative codebook. Maji et al. [19] and Wohlhart et al. [20]
proposed approaches to learn discriminative weights of the
codebook using max-margin frameworks. Some studies
have adopted a supervised manner to generate a codebook

using random forests [21] and locality-constrained linear
coding [15]. These studies have improved the training step
that generates a codebook in order to achieve robustness to
false votes. Our proposed method both constructs a vote
distribution model in the training step and generates a code-
book. In addition, the proposed method does not restrict the
type of codebook generation method. We can combine the
proposed method with the aforementioned methods.

Other studies have attempted to improve the voting
process to solve the problem of false votes. Razavi et al.
indicated that sparsity of local appearance is an effective
measure for discriminating foreground and background fea-
tures [22]. In the voting process, their method selects fore-
ground features based on the sparsity measure and reduces
the influence of background features. Their method is effec-
tive only for false votes generated by background features.
Some studies have attempted to group local features to re-
duce the independence of Hough voting [23], [24]. They
have improved the voting process to manage multiple de-
pendent local features. In general, these studies have im-
proved the voting process but only find the local maxima of
votes at completion. Our proposed method calculates vote
distributions including false votes from the voting space
when the voting process is completed. In addition, the pro-
posed method can be combined with these other methods
that improve the voting process.

Woodford et al. optimized vote weights for each class
by minimizing entropy in the voting space of each class sep-
arately when the voting process is completed [25]. They as-
sumed that only one vote created by each local feature is cor-
rect. This assumption is flawed when background features
exist that generate no correct votes. Their method would
enlarge weights of false votes generated by background fea-
tures in the optimization. Our proposed method is not af-
fected by background features unless the features change
vote distributions.

2 Similar to the vote distributions, Hoai et al. in-
troduced relative class scores (RCS) for action recogni-
tion [26]. RCS is a vector representation of output scores
of a multi-class action classifier. The main difference be-
tween the vector representing vote distributions and RCS
is whether each method sorts the elements of vector. The
scores would become independent from the action classes
because of sorting so that RCS-based action recognition
could not achieve satisfactory accuracy. We experimentally
confirmed that the vote distributions are superior to RCS for
Hough-based action detection.

A preliminary version of this study appeared in [27].
Voting trends described in [27] are based on the same con-
cept as vote distributions. This study presents a detailed dis-
cussion of the concept of vote distributions. We also discuss
conducted experiments and our evaluation of robustness to
occlusions.

3. Hough-Based Action Detection

This section explains the conventional Hough-based action
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detection based on Hough forests [12]. Two steps are used
to detect actions: training and detection. In Sect. 3.1, we
explain the training step and in Sect. 3.2 we describe the de-
tection step.

Before describing the training step, we must indicate
the configurations of the Hough transform in this study. We
define a spatio-temporal center position of an action as a
ground-truth position based on the previous study [12], [14].
We use the 4D voting space consisting of 2D-spatial, 1D-
temporal, and 1D-scale spaces. The scale space represents
the height of the spatial bounding box of a given action.
Other scale parameters such as the spatial aspect ratio and
temporal duration are managed as fixed.

3.1 Training

During the training step, a Hough-based method generates
a codebook of local features. In this section, we explain
the codebook based on Hough forests [21]. However, please
note that our proposed method can employ any codebook
generation method, such as agglomerative clustering [18]
and random projection trees [14].

The Hough forests-based method generates the code-
book using random forests [28] that are ensemble classifiers
composed of many decision trees. The codebook represents
the relationship among local features, action classes, and po-
sitions.

Local features are extracted from action videos as train-
ing data. Each tree of the random forests is constructed from
a set of local features F = {fi = (Ii, ci,di, σi, τi, hi)}, where
i is an index of a local feature; Ii is a visual feature vec-
tor; ci is the class label of an action; di ∈ R3 is a spatio-
temporal displacement vector from a feature position to an
action position; σi and τi are spatial and temporal scales of a
local feature, respectively; and hi is the height of the spatial
bounding box of a given action. Ii can be multi-channeled
to accommodate multiple features (i.e., Ii = (I1

i , I
2
i , · · · , IF

i ),
where F is the number of feature channels). We use space-
time interest points [29], [30] for local features in the exper-
iments. Their details are described in Sect. 5.

Each nonleaf node of a tree employs the following bi-
nary test:

b f ,q,r,o(I) =

⎧⎪⎨⎪⎩ 0 if I f (q) < I f (r) + o

1 otherwise,
(1)

where f is a feature channel, q and r are the dimensions of
I f , and o is an offset.

During training step, random forests iterate classifica-
tion of the local features into two nodes. This iteration is
continued until each node satisfies the termination criteria
defined by the maximum depth or minimum number of lo-
cal features in a node. Each leaf node stores information
from the assigned features: {(ci,di, σi, τi, hi)}. Leaf node L
can calculate the class probability p(c | L) by the proportion
of features for each class c.

Each node generates a set of binary tests with random

values f , q, r, and o. We use two measures to select the most
suitable binary test. The first measure is class uncertainty:

U1(A) = −|A|
∑

c

p(c | A) ln p(c | A), (2)

whereA is a subset of local features, | · | denotes the number
of elements in the set, and p(c | A) is a class probability cal-
culated by the proportion of features in A for each class c.
The second measure is the uncertainty of the displacement
vectors:

U2(A) =
∑

c

⎛⎜⎜⎜⎜⎜⎜⎜⎝
∑

d∈DAc

∥∥∥d − dAc
∥∥∥2

⎞⎟⎟⎟⎟⎟⎟⎟⎠ , (3)

where DAc is the displacement vectors of the features of class

c inA and dAc is an average vector of DAc .
Each node randomly chooses between these measures

and selects binary test b∗, which minimizes uncertainty in
the generated set. This minimization is represented by the
following equation:

arg min
b∗

(U ({f | b∗ = 0}) + U ({f | b∗ = 1})) , (4)

where {f | b∗ = 0} is the set of the local features that output 0
by the function b∗.

3.2 Detection

The method casts votes for action classes, positions, and
scales to detect actions. These votes are cast in the 4D vot-
ing spaces. Consider that the local feature fy extracted from
position y = [ys, yt] ∈ R3 results in leaf node Lk

y of tree
k. Here, ys ∈ R2 and yt ∈ R1 are the spatial and temporal
positions of y, respectively. A vote based on training local
feature fi that is assigned to the leaf node can be represented
by the following equation:

v(y, i) =
[
vs(y, i), vt(y, i), vh(y, i)

]
,

vs(y, i) = ys +
σy

σi
ds

i ,

vt(y, i) = yt +
τy

τi
dt

i ,

vh(y, i) =
σy

σi
hi, (5)

where vs, vt, and vh are votes for the spatial, temporal, and
scale positions; σy and τy are the spatial and temporal scales
of feature fy; and ds

i and dt
i are the spatial and temporal dis-

placement vectors of di, respectively. The votes for class c
based on Lk

y can be defined as:

VLk
y

c =

{
v(y, i)

∣∣∣∣ i ∈ ILk
y

c

}
, (6)

where ILk
y

c denotes the indices of the training data of class c
assigned to leaf node Lk

y.
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Using the votes, the voting score of an action of class c
at position x ∈ R4 can be defined as:

V
(
c, x

∣∣∣∣VLk
y

)
=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
1∣∣∣∣∣VLk

y
c

∣∣∣∣∣
∑

v∈VLk
y

c

G(x, v)

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ p
(
c
∣∣∣ Lk

y

)
, (7)

G(x, v) = exp

(−‖xs − vs‖2
ws

)

× exp

(−‖xt − vt‖2
wt

)
× exp

(−‖xh − vh‖2
wh

)
(8)

where VLk
y is a set of the votes for all classes based on Lk

y

and p
(
c
∣∣∣ Lk

y

)
is a class probability calculated by the propor-

tion of local features assigned to Lk
y for each class c. Here, G

is the 4D Gaussian kernel function with three kernel band-
widths for space ws, time wt, and scale wh. Using the fol-
lowing equation, the voting score based on all votes can be
defined as

V (c, x | V) =
∑
y∈Y

⎛⎜⎜⎜⎜⎜⎝ 1
K

K∑
k=1

V
(
c, x

∣∣∣∣VLk
y

)⎞⎟⎟⎟⎟⎟⎠ , (9)

whereV is the votes based on all local features and trees, Y
is the set of positions of the local features, and K is the num-
ber of trees. The method finds local maxima of Eq. (9) for
each action class independently. The local maxima specify
the action positions of the corresponding action class in the
4D voting space that consists of 2D-spatial, 1D-temporal,
and 1D-scale spaces.

Each vote is calculated based on one local feature as
described in this section. One local feature describes only
a local region in the given video. Discriminating the local
features is difficult if a similar local motion exists between

Fig. 2 Examples of vote distributions calculated at circle positions. The filled and open circles indi-
cate the ground truth and other positions, respectively. (a), (b), and (c) are examples of the Get Up class,
and (d) is an example of the Pick Up class. The vote distributions of only (a) and (b) are similar. These
examples reveal that the calculated vote distributions at the ground truth positions are similar if they are
of the same class.

different action classes. Therefore, the Hough-based method
is prone to cast many false votes for wrong action classes. In
the next section, we show the manner in which our proposed
method reduces the influence of false votes.

4. Hough-Based Action Detection with Vote Distribu-
tion Model

We introduce the vote distribution model to the conventional
Hough-based method in order to improve robustness to false
votes. Our proposed method reduces the influence of false
votes by learning the characteristics of Hough voting. Fig-
ure 3 shows the flow of our proposed method. We explain
vote distributions in Sect. 4.1. In Sect. 4.2, we show the
training step of the vote distribution model. Finally, we de-
scribe the detection step of our proposed method in Sect. 4.3.

4.1 Vote Distribution

We represent the characteristics of Hough voting using the
voting scores for all action classes. Similar local features
generate false votes but the false votes do not occur ran-
domly such that they depend on relevant action classes. The
conventional Hough-based approaches basically cast votes
for not only a certain class but also other specific classes, as
shown in Fig. 2. We define the normalized voting scores for
all classes at a position as a vote distribution. The vote distri-
bution represents characteristics of the voting. Specifically,
the vote distribution at position x ∈ R4 can be represented
by the following equation:

V(x) =

⎡⎢⎢⎢⎢⎢⎢⎣
V

(
c1, x

∣∣∣V)
Z

, . . . ,
V

(
cN , x

∣∣∣V)
Z

⎤⎥⎥⎥⎥⎥⎥⎦ ,

Z =
N∑

j=1

V
(
c j, x

∣∣∣V)
, (10)
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Fig. 3 Flow of our proposed method. The orange boxes are our proposed elements.

where N is the number of action classes and Z is the normal-
ization constant.

Figure 2 shows the characteristics of Hough voting rep-
resented by the vote distribution. A vote distribution at a
ground truth position of an action has a high score on the
correct class. The distribution also has a high score on
classes having similar local motions. In this figure, the dis-
tribution of the Get Up class shows high scores on Get Up
and Pick Up classes, whereas the distribution of Pick Up
class shows high scores on Sit down and Pick Up classes.
The characteristics are different depending on each class and
position. They do not necessarily correlate. The proposed
method builds a vote distribution model by learning these
characteristics.

4.2 Training

To reduce the influence of false votes, our proposed method
builds a vote distribution model that represents the vote dis-
tributions of each class. Consider false votes for wrong ac-
tion classes generated by similar motions. If votes for the
correct action class and other specific wrong action classes
exist in the training step, we can estimate that the likeli-
hood for the wrong action classes is low based on the trained
characteristics. This estimation enables us to reduce the in-
fluence of false votes.

To build the model that estimates the likelihood based
on vote distributions, we use a vote distribution as a feature
vector. A multi-class classifier trained by using these vec-
tors can work as a vote distribution model and output the
likelihood p(c | V) using vote distribution V.

Before extracting the vectors, the proposed method
prepares the codebook described in Sect. 3.1. The method
then executes the conventional voting process described in
Sect. 3.2 on videos from the training data. We define vote
distributions at the ground truth and surrounding position
as positive data, and vote distributions far from the ground-

truth position as negative data. The proposed method builds
the vote distribution model using the positive and negative
data. We note that the training videos for the codebook
should be different from those for the model. If they were
the same, some votes are cast to the ground truth position
perfectly. Positive data generated using such votes causes
overfitting of the vote distribution model.

In this study, we use random forests as the classi-
fier. Therefore, a vote distribution model is a nonparametric
model based on random forests. The model calculates the
likelihood p(c | V) based on vote distribution V(x). Here,
the random forests use vote distributions instead of local fea-
tures. The random forests adopt only the class uncertainty
measure of Eq. (2) because the vote distributions do not have
displacement vectors.

4.3 Detection

In the detection step, our proposed method initially calcu-
lates votesV using the conventional voting process. We can
then calculate the vote distributions using Eq. (10) and esti-
mate the likelihood based on the distribution. The proposed
method detects actions using both the voting scores and the
likelihood. The proposed method multiply the scores by the
likelihood. Low likelihood for wrong action classes esti-
mated by the model modulates the voting scores accumu-
lated by false votes. The multiplied voting score of an action
of class c at position x can be defined as:

V (c, x | V,V(x)) = V (c, x | V) p (c |V(x)) , (11)

The proposed method finds local maxima of Eq. (11) for
each action class independently. The local maxima spec-
ify the action positions of the corresponding action class in
the 4D voting space.

Figure 4 shows an example of reducing the effect of
false votes when using the proposed method. The first row
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Fig. 4 Reducing the influence of false votes. The first row shows a video
frame, the voting scores, the likelihood based on the vote distribution, and
the product of the voting scores and likelihood of the Get Up class. The
second row lists the voting scores, likelihood, and product of the Pick Up
class. (a) is a video frame from Get Up. The circles indicate the ground
truth positions of the action in the video. The second column visualizes 2D
slices of voting spaces. The third column shows the estimated likelihood
based on the vote distribution. The fourth column shows the product of the
second and third columns. (g) shows that our proposed method reduces the
influence of false votes in (e) whereas the correct votes in (b) remain in (d).

of the figure shows a video frame, the voting scores, the like-
lihood based on the vote distribution, and the product of the
voting scores and likelihood of the Get Up class. The second
row of the figure provides the voting scores, likelihood, and
product of the Pick Up class. The second, third, and fourth
columns correspond to V (c, x | V) in Eq. (9), p(c | V(x)),
and V (c, x | V,V(x)) in Eq. (11), respectively. The pixel val-
ues of (b) denote the effect of correct votes for the Get Up
class. The effect remains in (d) by using the high values esti-
mated by the proposed method in (c). By contrast, the pixel
values of (e) refer to the influence of false votes for the Pick
Up class while the Get Up class is performed. The influence
is reduced in (g) by using the low values estimated by the
proposed method in (f). This kind of reduction enhances the
robustness of the proposed method to false votes.

High values exist at the nonground truth positions of
the correct class and the positions of the wrong class, as
shown in Fig. 4 (c) and (f), respectively. These values rep-
resent to noise caused by estimation based on vote distri-
butions. This kind of noise often occurs at positions hav-
ing extremely low voting scores, such as at values far from
the ground truth positions shown in (b) and (e). Because
the vote distributions are the normalized voting scores as
shown in Eq. (10), a slight difference in extremely low vot-
ing scores causes considerable variation of vote distributions
by normalization. Therefore, estimation at such positions is
incorrect. However, such noise does not influence detection
performance considerably because such noise is multiplied
by extremely low voting scores.

Our proposed method assumes that the conventional
voting process works well. However, even if the voting pro-
cess performs well, false votes caused by similar motions
lead to false detections. The proposed method reduces the
influence of such false votes to improve detection perfor-
mance.

5. Experiments

We evaluated our proposed method using two public action
datasets: INRIA Xmas motion acquisition sequences (IX-
MAS) dataset [31] and UT-Interaction dataset [32].

In experiments, we compared the proposed method
with three baseline methods and a related method proposed
by Hoai et al. [26]. The first method is the conventional
Hough-based action detection described in Sect. 3. The
second method adds nonmaximum suppression over action
classes to the first method. The voting score of the second
method can be defined as

Vmax (c, x | V) =

{
V (c, x | V) if c = cmax

x

0 otherwise,
(12)

where cmax
x = argmaxcV (c, x | V). We adopted the second

method because the voting score of the correct class is likely
greater than that of other classes at its ground truth position
as shown in Fig. 2. If the voting score of the detection class
is not larger than that of other classes at its detection po-
sition, the detection is likely a false positive. The second
method removes such detections. The third method uses the
vote distribution model. During the detection step, the third
method only uses the likelihood based on a vote distribution
whereas the proposed method uses both the voting scores
and likelihood. The related method uses the RCS similar to
vote distributions. RCS vectors are designed in a one-vs-all
manner. A first element of a RCS vector is the voting score
of the target action class. All other elements of the vector
are the voting scores sorted in the descending order for other
action classes. Therefore, RCS vectors identify only target
class whereas our vote distributions identify all classes by
original order of the classes. The method estimates the like-
lihood based on RCS vectors.

We used space-time interest points [29] and histograms
of oriented (spatial) gradient/histograms of optical flow
(HOG/HOF) descriptors [30] for the local features of both
the proposed and the baseline methods. The parameter set-
tings were as follows: spatial scales σ2 = {2, 4, 8, 16, 32, 42}
and temporal scales τ2 = {2, 4}. The dimensions of the HOG
and HOF descriptors were 72 and 90, respectively.

The Hough-based methods must find the local maxima
after calculating the voting scores, such in Eqs. (9), (11), and
(12). In the experiments, we used quick shift [33] to identify
the initial coarse local maxima. We then refined the local
maxima using mean shift [34].

The local maxima indicated the spatio-temporal posi-
tions and heights of the spatial bounding boxes of actions.
To generate spatio-temporal volumes from the local max-
ima, we require aspect ratios and temporal durations. We
used average values for the aspect ratios and temporal dura-
tions from ground truth labels of training data.

We evaluated the methods using f-score. A detection
is correct when the detection class label is correct and the
overlap ratio between the detection volume and ground truth



2802
IEICE TRANS. INF. & SYST., VOL.E99–D, NO.11 NOVEMBER 2016

volume is greater than 0.5. We adopted the intersection-
over-union criterion for the overlap ratio.

5.1 Datasets

The IXMAS dataset [31] includes 11 actions: Check Watch,
Cross Arms, Scratch Head, Sit Down, Get Up, Turn Around,
Walk, Wave, Punch, Kick, and Pick Up. Each action was
performed three times by 10 actors and recorded by five
cameras. The action orientations differ from one actor to
another. The dataset provides ground truth labels that in-
clude a time interval and human silhouettes for each action
execution. We defined the spatio-temporal center of the time
interval and the bounding boxes generated using the silhou-
ettes as the ground truth of the action positions. Figure 5
shows examples from the dataset. The resolution and frame
rate of the videos are 390 × 291 pixels and 23 fps, respec-
tively.

The UT-Interaction dataset [32] contains videos of the
continuous execution of six action classes: Shake Hands,
Hug, Kick, Point, Punch, and Push. The dataset contains
20 sequences, including 162 action executions. The dataset
provides ground truth labels that include a time interval and
a bounding box for each action execution. We adopted the
same definition for the ground truth of the action position
as for the IXMAS dataset. Figure 6 shows examples from
the dataset. The resolution and frame rate of the videos are
720 × 480 pixels and 30 fps, respectively. In contrast to the
IXMAS dataset, the UT-Interaction dataset includes simul-
taneous occurrence of multiple actions.

Fig. 5 Examples from the IXMAS dataset.

Table 1 Average f-score for all cameras on the IXMAS dataset

Method Check
Watch

Cross
Arms

Scratch
Head

Sit
Down

Get
Up

Turn
Around

Walk Wave Punch Kick
Pick
Up

Avg

Standard 0.765 0.762 0.562 0.741 0.700 0.922 0.931 0.568 0.573 0.854 0.656 0.730
Max 0.784 0.792 0.622 0.820 0.745 0.959 0.931 0.614 0.637 0.857 0.702 0.769
VD Only 0.418 0.284 0.162 0.475 0.502 0.639 0.529 0.245 0.156 0.452 0.345 0.383
Hoai 0.780 0.795 0.607 0.819 0.747 0.945 0.956 0.589 0.577 0.844 0.696 0.759
Proposed 0.818 0.810 0.656 0.863 0.782 0.963 0.967 0.588 0.619 0.862 0.747 0.789

5.2 Results

5.2.1 IXMAS Dataset

We employed leave-one-actor-out cross validation that uses
the data of one actor as the test data and the remainder as
the training data. In the training step, the proposed and third
baseline methods built a vote distribution model. To avoid
overfitting described in Sect. 4.2, we divided the training
data using the leave-one-actor-out strategy in each valida-
tion iteration. We generated a codebook using the larger
data and generated the training data for the vote distribution
model using the remainder. This generation was repeated
while changing the division.

Table 1 lists the f-score averaged over all cameras and
Fig. 8 shows example output from the proposed method.
Standard, Max, and VD Only refer to the first, second, and
the third baseline methods, respectively. Hoai is the related
method using RCS [26]. Avg is the f-score averaged over all
11 classes. The proposed method achieves the highest re-
sults compared to the comparative methods. These results
indicate that using vote distributions improves action detec-
tion performance. The performance of Max is superior to
that of Standard but inferior to that of the proposed method.
Max only considers whether the voting score for a class is
the maximum over all action classes. By contrast, our pro-
posed method uses the distribution of the voting scores over
action classes. Therefore, the class that has a maximum
score is insufficient, and the distribution is essential for im-
proved action detection performance.

VD Only performs the worst, whereas our proposed
method performs the best. VD Only uses the vote distribu-
tion model in the same manner as the proposed method. The
difference between the two methods is based on whether the

Fig. 6 Examples from the UT-Interaction dataset.
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Fig. 7 Precision-recall curves of Camera 0 in the IXMAS dataset. AP means the average precision.

Fig. 8 Output examples of our proposed method on the IXMAS dataset.
Yellow, red, and blue rectangles indicate true positives, false positives, and
ground truths, respectively.

method uses the voting scores as well as the model. The
worst performance would be based on the incorrect estima-
tion described in Sect. 4.3. Normalization of the vote dis-
tribution would generate an incorrect estimation at the po-
sitions with extremely low voting scores. To avoid the in-
fluence of the noise, we can use threshold for the voting
scores. If the sum of the voting scores at a position over
all action classes is lower than the threshold, the method
does not estimate the likelihood based on the vote distri-
bution and outputs zero probabilities for all action classes.
Note that this threshold is different from the threshold for
detection, and only decides whether the estimation is per-
formed or not. Figure 9 shows the results of the methods
using thresholding. The performance of VD Only improves
as the score threshold increases. This result indicates that
thresholding reduces the influence of the incorrect estima-
tion. By contrast, the performance of our proposed method
does not vary based on thresholding. The proposed method
multiplies the voting scores by the likelihood. The proposed
method reduces the influence of the incorrect estimation us-
ing the low voting scores. Therefore, multiplication is es-
sential to improving action detection performance.

Our proposed method also achieves a higher f-score,
outperforming Hoai. This result indicates that the vote dis-
tribution representation is superior to the RCS for Hough-

Fig. 9 F-score averaged over all action classes as a function of a score
threshold on the IXMAS dataset.

based action detection. Figure 11 shows examples of vote
distributions and RCS. The vote distributions for Get Up
and Pick Up have different characteristics (see (a) and (b)).
By contrast, RCSs for the two classes are similar because
of sorting (see (c) and (d)). Therefore, class-conscious vote
distributions are more effective than RCS.

Table 2 lists the f-scores of each camera averaged over
all 11 classes. The proposed method outperforms the com-
parative methods except with respect to Camera 4. The re-
sults of all methods from Camera 4 are low. Camera 4 cap-
tured a person from an overhead location, but the motion
captured from this location does not possess sufficient visual
features for some classes that contain upward and downward
motions, such as Sit Down and Get Up. Moreover, the as-
pect ratios in Camera 4 varied significantly depending on the
direction in which the person is facing. We fixed the aspect
ratio of the detection volume at the average value over all
ground truth labels in each camera of the dataset. This fixed
value cannot adapt to variation. The upward and downward
motions and the fixed value cause low f-scores.

Figure 7 shows the precision-recall curves of the meth-
ods. The IXMAS dataset has 11 classes and 5 cameras. The
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number of precision-recall curves for each class and each
camera is too large for visualization of the results. We se-
lected three curves: Sit Down, Get Up, and Pick Up classes
of Camera 0. Compared with the comparative methods,
our proposed method achieves high precision for each re-
call value. These results indicate that the proposed method
is effective for reducing false detections.

Figure 10 shows the confusion matrices for Standard

Fig. 10 Confusion matrix of: (a) Standard and (b) Proposed on the IX-
MAS dataset.

Fig. 11 Examples of vote distributions and RCS on the IXMAS dataset.
(a) and (b) are proposed vote distributions of Get Up and Pick Up, respec-
tively. (c) and (d) are RCS of Get Up and Pick Up, respectively.

Table 2 Average f-score over all classes of each camera on the IXMAS
dataset

Method Cam0 Cam1 Cam2 Cam3 Cam4

Standard 0.748 0.752 0.732 0.806 0.615
Max 0.784 0.782 0.765 0.852 0.664
VD Only 0.418 0.284 0.162 0.475 0.502
Hoai 0.789 0.805 0.715 0.854 0.634
Proposed 0.823 0.824 0.783 0.872 0.642

Table 3 F-score on the UT-Interaction dataset

Method Shake
Hands

Hug Kick Point Punch Push Avg

Standard 0.750 0.894 0.698 0.645 0.327 0.710 0.670
Max 0.808 0.889 0.667 0.656 0.258 0.714 0.665
VD Only 0.576 0.680 0.294 0.471 0.128 0.491 0.440
Hoai 0.807 0.909 0.698 0.636 0.429 0.733 0.702
Proposed 0.873 0.870 0.700 0.657 0.313 0.833 0.708

and Proposed. For example, the value of row Check Watch
and column Cross Arms refers to the ratio of the number of
detections in which Check Watch was detected while Cross
Arms is performed. Standard reveals some false detections
between certain classes. For instance, the method detected
Sit Down while Pick Up is performed. This false detection
might be caused by similar stooping motions that are part
of Sit Down and Pick Up. In our experiments, the proposed
method reduced such false detections and improved detec-
tion accuracy.

5.2.2 UT-Interaction Dataset

We employed 10-fold cross-validation that uses the data of
two sequences as test data and the remainder as training
data. The dataset contains motions that are not labeled. We
used such motions as those in the Others class for the train-
ing. For detection, we did not cast votes for any class if the
local features were classified into the Others class. For the
training of a vote distribution model, we divided the train-
ing data as in the previous experiment. The 10-fold strategy
was used for the division instead of the leave-one-actor-out
strategy.

Table 3 lists the f-scores and Fig. 12 shows examples of
output when using the proposed method. Avg is the f-score
averaged over all six classes. Proposed achieves the highest
f-score compared to those from the comparative methods.
Figure 13 shows the precision-recall curves of the methods.
Our proposed method achieves high precision for most re-
call values compared with the comparative methods, as well
as the IXMAS dataset. These results show that the proposed
method is also effective when multiple actions occur simul-
taneously.

Figure 14 shows the confusion matrices for Standard

Fig. 12 Output examples of our proposed method on the UT-Interaction
dataset. Yellow, red and blue rectangles indicate true positives, false posi-
tives, and ground truths, respectively.
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Fig. 13 Precision-recall curves in the UT-Interaction dataset. AP means the average precision.

Fig. 14 Confusion matrix of: (a) Standard and (b) Proposed in the UT-
Interaction dataset.

and Proposed. In our experiments, Standard detected Push
when Punch is performed frequently. This false detection
might be caused by similar arm motions that are part of Push
and Punch. Similarly with respect to the IXMAS dataset,
the proposed method reduced the numbers of false detection
for actions, including similar motions in the UT-Interaction
dataset.

The f-score of the proposed method for Punch is lower
than that of Standard. This result would be caused by the
situation only when correct votes are less in number. The
vote distribution including such correct votes flattens out as
shown in Fig. 15 (a). When the distribution flattens out, the
difference in the frequency among action classes is small.
The likelihood for correct action class based on such vote
distribution tends to be low. Figure 15 (b) and (e) show the
relation between original voting score and likelihood based

Fig. 15 Voting scores and likelihood based on vote distribution. Each
data point in (b) and (e) represents a local maximum around ground truth
positions for each class. (a) is the vote distribution of local maximum de-
scribed by the orange triangle in (b). (c) and (d) are the vote distributions of
local maxima described by the orange square and star in (e), respectively.

on a vote distribution. Each data point in these figures rep-
resents a local maximum around ground truth positions for
the corresponding class. Figure 15 (b) shows that the origi-
nal voting scores for Punch are basically low. According to
the low score, the likelihood for Punch is low. The proposed
method degraded the voting score of the local maximum by
multiplying the likelihood. The threshold for voting scores
should be decreased to detect the degraded local maxima as
true positives. The lower threshold would cause additional
false positives so that it hurt the f-score for Punch.
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Fig. 16 Examples from the UT-Interaction dataset with artificial occlu-
sions. The number of occluded regions in the examples is two.

Similarly, Standard outperformed our proposed method
for Hug. Vote distributions of the local maxima that have
high voting scores (i.e. the number of correct votes is large)
are not flat but peaky as shown in Fig. 15 (c). The likeli-
hood for Hug based on such distribution tends to be high.
However, some local maxima have flat vote distributions as
shown in Fig. 15 (d). Figure 15 (e) shows that such local
maximum has low voting score and the likelihood for Hug
based on such distribution tends to be low. Therefore, simi-
lar to Punch, the proposed method hurt the f-score for Hug
because the multiplied voting score became lower.

Our proposed method performed better than Hoai ex-
cept for Hug and Punch. As mentioned above, the proposed
method did not improve the f-score for the two classes. This
result also relates to above discussion.

The proposed method might degrade robustness to oc-
clusions in the Hough-based method. If actions are oc-
cluded, the vote distributions are varied and this variation
might cause poor estimation. Here, we evaluated robustness
to occlusions using the UT-Interaction dataset with artificial
occlusions and we generated artificial occlusions for each
action. Figure 16 shows examples of the occlusions. We
divided equally the width of the bounding box of each ac-
tion into 10 regions. We then randomly chose regions as
occluded. We used original local features in the training
step. In the detection step, we removed the local features in
the occluded regions. Other settings were the same as in the
previous experiment that used the UT-Interaction dataset.

Figure 17 shows the f-score using the dataset with the
artificial occlusions. The results when the number of oc-
cluded regions is zero are the same as those in Table 3. The
f-score of both Standard and Proposed methods did not de-
crease significantly as the number of occluded regions in-
creased. Therefore, the proposed method remains robust to
occlusions and improves detection accuracy.

5.3 Limitations

We assume that our proposed method is applied to fixed-
action categories. If the categories change, we have to re-
build not only a vote distribution model but also random
forests for Hough voting. In addition, the number of cat-
egories might influence the performance of a vote distribu-
tion model. The number of dimensions of a vote distribu-
tion is equal to the number of categories. In this case, high-
dimensional distributions have more information than low-

Fig. 17 F-score averaged over all action classes in the UT-Interaction
dataset with artificial occlusions.

dimensional distributions. Therefore, when the number of
categories increases, the performance of a vote distribution
model might improve.

We also assume that input videos into our proposed
method are captured by stationary cameras. Applying the
proposed method to videos captured by moving cameras
would be difficult because the movements of cameras affect
the spatial points of votes. Calculating global camera mo-
tions might remove this limitation. Global camera motions
would adjust the spatial points of votes for each frame.

6. Conclusion

We proposed a novel Hough-based action detection method
to enhance the robustness of detecting false votes. Our
proposed method employed vote distributions, which rep-
resent the voting scores for each action class. The pro-
posed method learns the characteristics of the Hough vot-
ing based on vote distributions in order to reduce the effect
of false votes. The main contribution of this paper is that
our vote distribution model improves the performance of the
Hough-based action detection by reducing the influence of
false votes caused by similar local motion between differ-
ent action classes. In experiments, we confirmed that the
proposed method reduces the number of false positive detec-
tions and improves action detection accuracy compared with
the conventional methods. The proposed method achieved
0.789 and 0.708 f-scores on the IXMAS and UT-Interaction
datasets, respectively. These results indicate that the pro-
posed method works well in a controlled environment that
contains multiple actions captured by a stationary camera.

A future study will improve the vote distribution
model. Vote distributions vary temporally during actions be-
cause actions can be regarded as sequences of sub-actions.
The current model does not manage such temporal variances
of vote distributions. We believe that a new model that can
represent such temporal variances will be more effective for
action detection.
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