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PAPER

Top-Down Visual Attention Estimation Using Spatially Localized
Activation Based on Linear Separability of Visual Features

Takatsugu HIRAYAMA†,††a), Member, Toshiya OHIRA†b), Nonmember, and Kenji MASE†c), Fellow

SUMMARY Intelligent information systems captivate people’s atten-
tion. Examples of such systems include driving support vehicles capable of
sensing driver state and communication robots capable of interacting with
humans. Modeling how people search visual information is indispensable
for designing these kinds of systems. In this paper, we focus on human
visual attention, which is closely related to visual search behavior. We
propose a computational model to estimate human visual attention while
carrying out a visual target search task. Existing models estimate visual
attention using the ratio between a representative value of visual feature of
a target stimulus and that of distractors or background. The models, how-
ever, can not often achieve a better performance for difficult search tasks
that require a sequentially spotlighting process. For such tasks, the lin-
ear separability effect of a visual feature distribution should be considered.
Hence, we introduce this effect to spatially localized activation. Concretely,
our top-down model estimates target-specific visual attention using Fisher’s
variance ratio between a visual feature distribution of a local region in the
field of view and that of a target stimulus. We confirm the effectiveness of
our computational model through a visual search experiment.
key words: human visual attention, visual search, saliency map, activation
map, linear separability

1. Introduction

Many researchers have focused on human vision to develop
advanced information systems that interact with humans be-
cause gazing at something implies human cognitive states
such as interest and intent. A human-friendly robot re-
quires not only verbal communication but also nonverbal
communication such as eye contact and mutual gaze [1]. In
order to establish natural joint attention between a person
and a robot, the robot should estimate when and on what
the person will focus [2]. Intelligent driving support sys-
tems should also be able to estimate driver’s visual attention.
The systems help the driver recognize driving cues such as
signboards and guide plates on the roads. The visibility of
these objects differs in varying traffic conditions [3] and the
driver’s cognitive state. The systems are effective if they can
estimate the visibility according to the situations and make
the driver aware of their locations. Human visual attention
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is important for designing rich human-computer interaction.
Visual attention is a built-in mechanism of the human

visual system and is used to quickly focus one’s attention
on a region in a visual scene that is most likely to contain
objects of interest. Visual attention is classified as either
bottom-up or top-down [4]. When only visual stimuli acti-
vate visual attention in a scene, this is known as bottom-up
processing. In contrast, when people view a scene with in-
tention, such as searching for a target or driving a car, they
shift their visual attention in a top-down manner.

In recent years, computing visual saliency and simu-
lating visual attention have attracted much attention in the
field of robotics and computer vision. Itti et al. proposed
a representative computational model of visual saliency [5].
They incorporated a bottom-up computational process into
their proposed saliency map model based on the feature in-
tegration theory [6] and multi-resolution structure [7]. Other
bottom-up visual attention models, many of which are the
derivatives of the saliency map model, have been developed
by other researchers [8].

On the other hand, computational models of top-down
visual attention are still not well studied. However, many
psychophysical findings and conceptual models on task-
oriented visual attention have been reported [9]. Our re-
search focuses on estimating top-down visual attention ac-
tivated during visual search tasks. In this paper, we define
this attention as target-specific visual attention. We propose
a novel computational model based on psychophysical find-
ings of visual search, which estimates target-specific visual
attention using spatially localized activation based on linear
separability between visual features of a target and the oth-
ers.

This paper is organized as follows. The next section
defines the visual search task treated in this work. Section 3
covers the related work and identifies the problem. Section 4
describes the proposed model to estimate target-specific vi-
sual attention. Section 5 reports and discusses experimen-
tal results for investigating the effectiveness of the proposed
method. Section 6 concludes the paper.

2. Visual Search Task

Conventional psychophysical studies on visual search em-
ploy simple geometric images. Recently, some researchers
have used natural object images with more complicated tex-
tures [10]. According to them, we design a visual search
task using natural object images as follows: (1) An ex-
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Fig. 1 Example of a pair of images used for the target presentation phase
and the target search phase.

perimenter presents a target image as a cue to an experi-
mental participant at the center of the display field for sev-
eral seconds (Fig. 1 (a)). (2) The experimenter then presents
a search image where the target and distractor objects are
aligned and asks the participant to search for the target ob-
ject (Fig. 1 (b)). Note that the target image is the same as the
target object included in the search image.

3. Related Work

In this section, we discuss researches related to top-down
visual attention in search tasks. Figure 2 outlines a typical
computational process that modulates the weights of visual
features [4]. Some researchers have proposed the compu-
tational models based on this weight modulation process.
Elazary et al. proposed a Bayesian model called SalBayes,
which regards the posterior probability that the visual fea-
tures extracted from an image region belong to an object
class as saliency [10]. The model needs to recognize the ob-
ject to detect the target by means of maximum a posteriori
probability estimation.

For visual search tasks, it is important to consider the
relationship between targets and distractors. The guided
search model gives more weight to feature channels that
uniquely represent the target [11]. The weighted response
of each channel to the target is compared with its average
response to the distractors. The channel with the greatest
positive difference is selected to compute the top-down at-
tention map. The discriminant saliency model proposed by
Gao et al. [12] compares entropy of each visual feature ex-
tracted from training images of a target with that from dis-
tractors and then selects the feature channels with positive
difference. The model also computes mutual information of
class labels, i.e., target and distractor, and the visual feature
extracted from a search image when the posterior probabil-
ity that the visual feature is in the target is larger than that in
the distractors. This process is applied to the selected feature
channels. Finally, the top-down attention map is computed
by accumulating the mutual information.

Signal-to-noise ratio (SNR) is effective for control-
ling the weight of each visual feature, which is the ratio
between target salience and distractors salience (or back-
ground salience). Navalpakkam et al. improved Itti’s origi-

Fig. 2 Computational model of top-down visual attention that modulates
weights of visual features [4].

nal saliency map model [5] by using the maximum SNR as
an objective function for weight modulation [13]. The cal-
culation of SNR depends on the mean features of the target
and distractors. Frintrop et al. proposed a weight modula-
tion model that directly applies SNRs computed from train-
ing image features to the modulation weights [14]. A top-
down saliency map is generated by taking the difference be-
tween the excitation and inhibition maps. The excitation
map consists of the weighted responses of feature channels
with SNR > 1, whereas the inhibition map consists of the
responses with SNR < 1. A target-specific visual attention
map is produced by combining the top-down and bottom-
up saliency maps. As a result, Frintrop et al. developed a
highly accurate visual attention system named VOCUS to
search for specific targets [15].

These weighted modulation models, however, have the
following problem:

• Because these methods employ the representative
value, such as mean, of visual feature extracted from
the target and that extracted from all other stimuli re-
gions (or background region) to compute the weight,
they only work well for uniform distributions and can-
not focus on a relationship in visual feature between
any local region in the search image and the target im-
age.

Our goal is to resolve this issue. We use spotlighting to per-
form the conjunction search of existing feature integration
theory [6], and calculate spatially localized weight for a re-
gion based on the relationship between the visual feature ex-
tracted from the local region in the search image and from
the target image. In particular, we pay special attention to
the linear separability effect on visual search tasks to cal-
culate these weights. Hodsoll et al. found that people can
easily find a target which is linearly separable from distrac-
tors in feature space [16].
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Fig. 3 Process flow of our proposed model.

Fig. 4 Spotlight regions in a search image. Yellow circles whose diam-
eter is visual angle θs represent spotlight regions, which are put at spatial
intervals ds ∼ θs/2.

4. Proposed Method

In this section, we describe our top-down model for com-
puting target-specific visual attention. We extend the orig-
inal saliency map model proposed by Itti et al. to this top-
down model. Figure 3 shows the process flow of our model.
As mentioned in Sect. 3, we consider the relationship be-
tween the visual feature extracted from each local region in
the search image and from the target image. To compute
the spatially localized weights based on the psychophysical
findings, we first put some local circular regions of interest
whose diameter is visual angle θs, at spatial intervals ds on
the search image as shown in Fig. 4. We refer to this region
as spotlight region for the remainder of this paper. We then
calculate the weights for each spotlight region. For this pro-
cess, we utilize the linear separability effect as described by
Hodsoll et al. [16].

An activation map that estimates target-specific visual
attention is computed using the following three processes:
(1) extraction of early visual features from the target im-
age and entire search image, (2) calculation of weights for
each spotlight region and modulation of the features using

the weights, and (3) integration and normalization of the fea-
tures.

4.1 Extraction of Early Visual Features from Search Image
and Target Image

We create feature maps that Itti et al. [5] have proposed to
compute the saliency map based on early visual features.
First, nine images with varying scales (v ∈ 0 . . . 8) are cre-
ated using Gaussian pyramids that progressively filter out
higher frequencies and subsample the image. Red (r), green
(g), and blue (b) channels are extracted from the images. An
intensity image (I) and four broadly-tuned color images (R,
G, B, and Y) are created according to

I(v) = (r(v) + g(v) + b(v))/3, (1)

R(v) = r(v) − (g(v) + b(v))/2, (2)

G(v) = g(v) − (r(v) + b(v))/2, (3)

B(v) = b(v) − (r(v) + g(v))/2, (4)

Y(v) = (r(v) + g(v))/2 − |r(v) − g(v)|/2 − b(v). (5)

Four local orientation images O(v, θ) (θ ∈ 0◦, 45◦, 90◦, 135◦)
are created from I using oriented Gabor pyramids as fol-
lows:

O(v, θ) = I(v) ∗ φ(θ), (6)

where ∗ denotes a convolution and φ denotes a Gabor filter.
Next, a set of feature maps are created from six patterns

of center-surround differences between a “center” finer scale
c (∈ 2, 3, 4) and a “surround” coarser scale s (= c + δ (δ ∈
3, 4)) as follows:

FI =

4∑

c=2

c+4∑

s=c+3

I(c) � I(s), (7)

FRG =

4∑

c=2

c+4∑

s=c+3

(R(c) −G(c)) � (G(s) − R(s)), (8)

FBY =

4∑

c=2

c+4∑

s=c+3

(B(c) − Y(c)) � (Y(s) − B(s)), (9)

FO(θ) =
4∑

c=2

c+4∑

s=c+3

O(c, θ) � O(s, θ), (10)

where “�” denotes interpolation to the finer scale and point-
by-point subtraction.

Figure 5 shows the feature maps. The upper part is an
example of feature maps computed from a target image. The
bottom part is an example from a search image. The seven
feature maps created are as follows: one intensity map, two
color maps (RG, BY), and four orientation maps (0◦, 45◦,
90◦, 135◦).

4.2 Weight Modulation Based on Linear Separability be-
tween Feature Distributions

We weight each feature map within each spotlight region
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Fig. 5 Examples of feature maps.

Fig. 6 Examples of linearly and nonlinearly separable targets [16].

based on linear separability. We first extract the distribu-
tions of visual features on the feature maps, and then com-
pute variance ratios between the distributions extracted from
each spotlight region in the search image and from a spot-
light region at the center of the target image using principles
of linear separability.

4.2.1 Psychophysical Findings on Visual Search

Hodsoll et al. suggested that the difficulty of visual search
is dependent on whether or not a target is linearly separable
from other objects within a feature space [16]. If the fea-
ture distribution of the target is linearly separable from that
of the distractors as shown in Fig. 6 (a), it is easy to locate
the target. In contrast, if the feature distributions of the tar-
get and the distractors are nonlinearly separable as shown in
Fig. 6 (b), a serial search is required to locate the target by
shifting one’s spotlight of attention in the conjunction search

Fig. 7 Weight calculations for some spotlight regions surrounded by yel-
low circles.

manner [6]. In the case of Fig. 6 (a), the color feature is im-
portant unlike in Fig. 6 (b). In accordance to the findings, we
consider that the linear separability in the conjunction search
manner modulates target-specific visual attention. We as-
sume that Fisher’s variance ratio of between-class variance
to within-class variance is fit to simulate the linear separabil-
ity effect. The ratio is a measure of linear separability [17].
The linear separability effect also exists for the other feature
spaces as well as the color space.

4.2.2 Linear Separability of Feature Distributions

We employ Fisher’s variance ratio Ji, j of between-class vari-
ance σ2

Bi, j
to within-class variance σ2

Wi, j
as a measure of the

linear separability between the visual feature distribution in
the i-th feature map extracted from a spotlight region χ j in
the search image (l = 1) and from the target image (l = 2).
These variances are defined as follows:

Ji, j =
σ2

Bi, j

σ2
Wi, j

, (11)

σ2
Bi, j
=

2∑

l=1

(ml − m)2, (12)

σ2
Wi, j
=

1
n

2∑

l=1

∑

x,y∈χ j

(
Fi, j(x, y) − ml

)2
, (13)

where Fi, j is the feature for each pixel (x, y) within the spot-
light region χ j of the i-th feature map, ml is the centroid
of the feature distribution, m is the centroid of ml, and n is
the number of pixels in the spotlight region. We apply the
above calculation to each feature map computed by equa-
tions (7) − (10).

Figure 7 shows an example of calculating weights
within some spotlight regions on the feature map. Note that
the spotlight regions are circled in yellow.
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Fig. 8 A search image and the corresponding activation map estimated
by our proposed model. The pink flower which is surrounded by a red
rectangle is a target object.

4.2.3 Weight Modulation of Feature Maps

We modulate the feature maps within each spotlight region
using the weights based on the variance ratio. Although the
target image had precisely the same appearance as an object
in the search image, they generated different feature maps
owing to the center-surround computation using the Gaus-
sian pyramid. Hence, linear separability between the target
image and any spotlight region is nonzero.

The variance ratio is calculated for each spotlight re-
gion of the seven feature maps. If the variance ratio is low,
the region in the search image is similar to the target im-
age on the feature map, and hence, a higher weight should
be given to the region on the feature map. If the variance
ratio is high, the region is not similar to the target image
on the feature map. In this case, the region on the feature
map should be given a lower weight. To accomplish this,
we apply the reciprocal of the variance ratio to the weight,
wi, j = 1/Ji, j, that is multiplied by the i-th feature map within
the spotlight region χ j as follows: wi, j|Fi, j(x, y)|. Depending
on the visual angle θs of the spotlight region and the inter-
val ds between the regions, a spotlight region overlaps the
surrounding spotlight regions. In this case, we multiply the
original feature map of the overlapping region by the weight
for each of the spotlight region, and then calculate the mean
of the modulated feature maps.

4.3 Feature Integration and Normalization

We integrate the seven feature maps into an activation map
using the same process as saliency map computation [5].

First, the seven feature maps are normalized with respect to
each modality and integrated into three conspicuity maps of
intensity, color, and orientation. Then, the conspicuity maps
are normalized and integrated into the activation map. The
local maximum of the activation map is regarded as the most
attracted location of the target search task. Figure 8 (a) is a
search image, and the pink-red flower which is surrounded
by a red rectangle is a target object. Figure 8 (b) is the acti-
vation map created from the search image. It shows that the
other pink flower surrounded by a yellow rectangle is ac-
tivated as with the target object unlike another pink flower
and other red flowers on the map.

5. Experiment and Result

5.1 Data Set

We employed the MSRA Salient Object Database [18] that
includes 1000 images and their binary mask images. To
create each search image, we selected 25 images from the
dataset in a random manner and placed the object regions
extracted using their mask images in a 5 × 5 grid pattern on
a black background. The target image included an object
selected from them in a random manner. We conducted the
experiment with various target and search images to mini-
mizing the effects of visual memory. Therefore, we did not
put same target objects in different search images or differ-
ent target objects in same search images. The size of the
search image and the target image was 1920 × 1200 pixels.

Ten participants (nine males and one female) with nor-
mal vision, whose ages ranged between 22 and 24 years,
participated in our experiment. Each participant sat with
his/her chin on a padded rest in front of a 24.1-inch screen.
The distance between the participant and the screen was 600
mm. They were instructed first to observe a target image
for five seconds and then shift their gaze to the center of
the screen once, and next search for the target object in the
paired search image until they found it. We treated this pro-
cedure as a trial of our visual search experiment. We con-
ducted 100 trials for each participant. All participants were
given the 100 combinations of target and search images in
the same order. We recorded their eye movements using a
Tobii X60 Eye Tracker (data rate: 60 Hz, accuracy: typical
0.5 degrees, precision: typical 0.5 degrees) installed below
the screen during the trials. With regard to the visual an-
gle of spotlight region θs, we consider the error range of
the eye tracker (accuracy + precision: 1.0◦) and central area
of vision (foveal area + para-foveal area: 5.0◦), i.e., θs is
the total range (6.0◦). We investigate the estimation accu-
racy for three kinds of interval between spotlight regions:
ds ∼ θs/4, θs/2, 3θs/4.

5.2 Comparative Models

We employ three conventional models to evaluate our pro-
posed model. One is the bottom-up visual attention esti-
mation model, i.e. saliency map model, proposed by Itti et
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al. [5]. Another is the target-specific visual attention model
proposed by Frintrop et al. [14]. In this paper, we use the
same visual feature set used by the saliency map model for
Frintrop’s model and for our proposed model. As mentioned
in Sect. 3, Frintrop’s model learns the optimum weight of
each feature channel from training images. In this experi-
ment, the weight of each target was learned using all com-
binations of the target image and the search images. We as-
sumed that the limited dataset would cause overtraining. Al-
ternatively, to avoid learning, we calculate the weights from
a target image and the paired search image and apply them to
the feature maps of the search image to estimate a top-down
saliency map S T . We call the third model SNR based model.
As with Frintrop’s model, the top-down saliency map is in-
tegrated with the bottom-up saliency map S B to estimate a
global activation map S A. The contribution of each map is
adjusted by a top-down factor wT ∈ [0 . . . 1]:

S A = (1 − wT ) ∗ S B + wT ∗ S T . (14)

For wT = 0.5, bottom-up and top-down cues are evenly re-
garded, whereas for wT = 1.0, only top-down cue is consid-
ered. We employ two activation maps with wT = 0.5 and
wT = 1.0 as the comparative models for the evaluation.

5.3 Evaluation Approach

To quantify how well our estimations match the participants’
actual fixation positions†, we use the normalized scanpath
saliency (NSS) [20], which is defined as the response value
at the current fixation position xhuman = (xhuman, yhuman) ∈
Z

2 in a visual attention map S that has been normalized to
have zero mean and unit standard deviation:

NSS =
1
σS

(S (xhuman, yhuman) − μS ) (15)

where μS and σ2
S are the mean and variance of the visual at-

tention map. A larger NSS score means a better fit, whereas
a zero NSS score means that the model was no better than
chance at attractive location.

When we calculate NSS, we consider the error range of
the eye tracker and central area of vision as with the visual
angle of spotlight region, and regard the total range (visual
angle: 6.0◦) as a fixation area. Figure 9 shows an exam-
ple of gaze positions and fixation areas. Each green point
shows the gaze position, which was recorded through a vi-
sual search trial. Each white circle, whose center is the green
point, shows the fixation area. In this paper, we exploit the
mean NSS within the circles to evaluate the models.

5.4 Experimental Result

Figure 10 shows the mean NSS across all visual search
tasks, i.e., 100 trials × 10 participants. The score for our

†A relatively stable eye position within some threshold of dis-
persion (2.5◦ in this experiment) over some minimum duration
(100 msec) [19].

Fig. 9 Gaze positions (green points) measured using the eye tracker and
fixation areas (white circles) considered the error range of eye tracker and
central area of vision.

Fig. 10 The boxplots of mean NSS. (a) proposed models ds ∼ θs/4, (b)
ds ∼ θs/2, (c) ds ∼ 3θs/4, (d) Itti’s saliency map, (e) Frintrop’s models
wT = 0.5, (f) wT = 1.0, (g) SNR based models wT = 0.5, (h) wT = 1.0.
A higher score means a better estimation. The lower edge of the box is the
lower quartile and the upper edge is the upper quartile. The circle indicates
the outlier.

proposed model ds ∼ θs/4 was 0.479 ± 0.129, which was
higher than the other models (our proposed models ds ∼
θs/2: 0.433 ± 0.136, ds ∼ 3θs/4: 0.344 ± 0.114, Itti’s
saliency map: 0.253 ± 0.084, Frintrop’s models wT = 0.5:
0.271 ± 0.084, wT = 1.0: 0.301 ± 0.100, SNR based models
wT = 0.5: 0.398 ± 0.115, wT = 1.0: 0.449 ± 0.154). Es-
pecially, the Friedman test and the multiple pairwise com-
parison revealed that the score for our proposed model
ds ∼ θs/4 was significantly higher than for Itti’s saliency
map with χ2(7) = 29.0, p < .01 and for Frintrop’s mod-
els wT = 0.5 with χ2(7) = 23.4, p < .01 and wT = 1.0
with χ2(7) = 19.2, p < .01, and the score for ds ∼ θs/2
was significantly higher than for Itti’s saliency map with
χ2(7) = 16.1, p < .05. Also, the score for the SNR based
model wT = 1.0 was significantly higher than for Itti’s
saliency map with χ2(7) = 17.6, p < .05.

Figure 11 shows the mean response value in false es-
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Fig. 11 The boxplots of mean NUSS. (a) proposed models ds ∼ θs/4,
(b) ds ∼ θs/2, (c) ds ∼ 3θs/4, (d) Itti’s saliency map, (e) Frintrop’s models
wT = 0.5, (f) wT = 1.0, (g) SNR based models wT = 0.5, (h) wT = 1.0. A
lower score means a less false estimation. The lower edge of the box is the
lower quartile and the upper edge is the upper quartile. The circle indicates
the outlier.

Fig. 12 Activation maps that our proposed model and the conventional
models estimated the visual attention to the search image shown in Fig. 8.

Fig. 13 Visual attention searching for the violet flower by the proposed
model (ds ∼ θs/4).

Fig. 14 Visual attention searching for the white dog by the proposed
model (ds ∼ θs/4).

timation areas, i.e., ungazed areas. We call the response
value the normalized unscanpath saliency (NUSS). Our ac-
tivation maps had much the same NUSS as the other mod-
els (our proposed models ds ∼ θs/4: −0.021 ± 0.006,
ds ∼ θs/2: −0.020±0.006, ds ∼ 3θs/4: −0.016±0.005, Itti’s
saliency map: −0.010 ± 0.005, Frintrop’s models wT = 0.5:
−0.012±0.005, wT = 1.0: −0.015±0.005, SNR based mod-
els wT = 0.5: −0.019 ± 0.006, wT = 1.0: −0.024 ± 0.006)
compared with NSS. These figures suggest that the activa-
tion map estimated by our proposed model was broadly con-
sistent with the actual focused area. We can also confirm
that shorter interval between the spotlight regions resulted in
better estimation. Such dense spotlighting simulates target-
specific visual attention. However, there are a trade-off be-
tween the accuracy and the computational cost.

Figure 12 shows experimental results obtained from the
target image and the paired search image shown in Fig. 8.
This figure shows that our proposed model estimated top-
down visual attention with high recall and precision. The
mean NSS of each model was 0.920 (our proposed model
ds ∼ θs/4), 1.075 (ds ∼ θs/2), 0.583 (ds ∼ 3θs/4), 0.688
(Itti’s saliency map), 0.741 (Frintrop’s model wT = 0.5),
0.780 (wT = 1.0), 0.703 (SNR based model wT = 0.5), and
0.704 (wT = 1.0) in the case of Fig. 12. Also, the mean
NUSS of each model was −0.052 (our proposed model ds ∼
θs/4), −0.060 (ds ∼ θs/2), −0.033 (ds ∼ 3θs/4), −0.036
(Itti’s saliency map), −0.038 (Frintrop’s model wT = 0.5),
−0.040 (wT = 1.0), −0.037 (SNR based model wT = 0.5),
and −0.038 (wT = 1.0). Figures 13 and 14 show the other
examples of activation maps estimated by our proposed
model with ds ∼ θs/4. The mean NSS of Figs. 13 (b) and
14 (b) were 1.304 and 0.697, respectively. Also, the mean
NUSS of Figs. 13 (b) and 14 (b) were −0.055 and −0.042,
respectively.

In situations where the saliency of a target object was
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low and the saliencies of other objects around the target ob-
ject were adequately high, participants might focus their at-
tention on the target object even if saliency of target object
was extremely low. This phenomenon suggests a need to
modulate the weights focusing not only on spatially local-
ized features, but also on more global features of the entire
feature map. Further, participants might search for a target
object with their peripheral vision, especially when the tar-
get object was located near the center of the search image.
In this case, an accurate evaluation of top-down visual at-
tention may not be achieved using any eye tracker. Thus,
redesigning the layout of objects on the search image or
conducting an experiment to measure covert attention [21]
would be helpful to alleviate this problem.

6. Conclusion

In this paper, we focused on the effect of linear separabil-
ity between the visual feature distributions of a target object
and a local region in field of view on the visual target search
task and proposed a computational model that estimates the
target-specific top-down visual attention. Through the ex-
periment, we confirmed the effectiveness of our computa-
tional model.

In the future, we plan to verify our model with natu-
ral images that contain complicated background. We will
also propose to calculate weights focusing not only on local
saliency but also on global saliency in consideration of the
spatial relationship between visual features of the focused
object and the neighboring objects. Further, we will extend
the model to estimate visual attention dynamics.
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