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Abstract—Visual place recognition remains challenging due to
significant variations in appearance caused by lighting, viewpoint,
and structural similarities across environments. To address this,
we propose Contextual Query VPR (CQVPR), a novel method
that bridges the gap between pixel-level and segment-level
representations. Unlike conventional approaches that either rely
on low-level appearance cues or high-level semantic partitions,
CQVPR integrates fine-grained visual details with global con-
textual understanding through a set of learnable queries. These
contextual queries capture high-level semantic structures within
the scene, which are fused with dense pixel-wise features to
form robust descriptors for retrieval. To encourage discriminative
query learning, we introduce a query matching loss that promotes
similarity among queries from the same location while pushing
those from different locations apart. Extensive experiments on
several datasets demonstrate that the proposed method outper-
forms other state-of-the-art methods, especially in challenging
scenarios.

Index Terms—visual place recognition, attention mechanism

I. INTRODUCTION

Visual Place Recognition (VPR), also referred to as image
localization [1] or visual geo-localization [2], aims to estimate
the geographic location of a query image by matching it
against a database of geo-tagged images. In the context of
intelligent transportation systems (ITS), VPR plays a crucial
role in enabling robust localization for autonomous vehicles,
intelligent navigation, and vehicle-to-infrastructure (V2I) com-
munication. Accurate and efficient VPR is foundational for
a wide range of ITS applications, including urban driving,
fleet coordination, and infrastructure-aware decision-making.
Beyond transportation, VPR has also been widely applied
in robotics [3]–[5], augmented reality [6], and pose estima-
tion [7]. Despite its significance, achieving reliable VPR in
real-world traffic environments remains challenging due to
dynamic lighting, weather variability, viewpoint changes, and
perceptual aliasing [8], where visually distinct places may
appear similar. Addressing these challenges is essential for de-
ploying scalable and dependable VPR systems in increasingly
complex urban mobility scenarios.

With the increasing demand for high-precision localization
in fields such as autonomous driving and robotic navigation,
the limitations of the Global Positioning System (GPS) have
become more evident. GPS suffers from signal blockage
in areas under elevated structures, where the GPS receiver
cannot capture signals from satellites, leading to a decrease in
accuracy. Additionally, in environments like urban canyons,
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Fig. 1. Conceptual difference among three VPR pipelines. (a) Pixel-level
methods. (b) Segment-level methods. (c) The proposed CQVPR.

where buildings are closely packed, satellite signals are of-
ten reflected, causing multipath effects that further degrade
the positioning accuracy. Furthermore, GPS is susceptible to
weather disturbances, signal interference, and spoofing attacks,
which restrict its reliability in critical scenarios. In contrast,
VPR achieves localization by extracting and matching visual
features of captured images without relying on satellite signals.
VPR demonstrates strong robustness and high precision in
complex outdoor environments, making it an effective com-
plement to GPS, especially in situations where satellite-based
localization is unavailable or unreliable.

Pixel-level methods [9], [10], which rely solely on visual
cues, aim to recognize places based on image appearance.
While effective in capturing fine-grained visual information,
these methods often lack high-level semantic context, result-
ing in an overemphasis on visually salient yet semantically
uninformative regions. In contrast, segment-level methods
typically partition an image into semantically meaningful
regions using clustering techniques or semantic segmentation
models that delineate object-level components [11]. These
segments often correspond to structural elements of landmarks,
thereby enhancing place recognition performance. However,
segment-level methods generally lack the dense pixel-wise fea-
ture representations necessary to preserve spatial consistency
and detailed visual cues. To reconcile the strengths of both
paradigms, we propose a hybrid method that integrates query-
level semantic features with dense pixel-wise representations,



aiming to achieve both semantic robustness and fine-grained
visual representations.

We introduce Contextual Query VPR (CQVPR), a novel ap-
proach that bridges the gap between pixel-level and segment-
level methods. Fig. 1 illustrates the conceptual difference of
our method and previous works. Specifically, It leverages a
set of learnable queries [12] to encode high-level contextual
information about both the landmarks and their surroundings,
where each contextual query represents a latent high-level con-
text such as certain objects or structural shapes. Visualization
results are present in Fig. 2 and Section IV-D2. The heatmap,
which depicts the regions that each query concentrates on,
is fused with pixel-level features for producing global and
local retrieving descriptors. Additionally, to enable the network
to learn more discriminative queries, we designed a loss
function that encourages the query embeddings of images from
the same place to be as similar as possible, while ensuring
that the query embeddings of images from different places
are as dissimilar as possible. Experimental results demon-
strate the proposed CQVPR can achieve accurate visual place
recognition results, even in challenging scenarios involving
large scale and viewpoint variations. To summarize, the main
contributions of this work are as follows:

(1) Through a learnable Transformer module, the task-
related contextual queries are extracted. These inferred queries,
containing rich high-level contexts, can be transformed into
context-aware features for more effective visual place recog-
nition.

(2) Contextual queries of images from the same place should
be similar since they depict the same scene. Therefore, a
query matching loss is proposed to maximize the similarity of
queries between images from the same place while minimizing
it conversely.

(3) Extensive experiments on various well-known bench-
mark datasets demonstrate that our proposed method outper-
forms several state-of-the-art baseline methods under different
scenarios.

II. RELATED WORKS

A. Pixel-level methods

Pixel-level VPR methods are significant approaches in VPR.
These methods typically begin by generating pixel-level fea-
tures, followed by a global retrieval stage. The global retrieval
stage aims to efficiently retrieve the top-k candidate images
from a large database using global feature representations. The
global feature is obtained by pooling pixel-level features across
the entire image. For example, CricaVPR [13] generates the
pixel-level features through the cross-view interaction and then
pools these pixel-level features into a global vector.

In addition to the global retrieval stage, some methods
include a re-ranking stage. The re-ranking stage involves
refining the global retrieved results by performing local feature
matching between the query image and the top-k candidates.
Local features are often pixel-level features or their upsam-
pled versions. The re-ranking score between two images is
determined by the number of matched points between them.
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Fig. 2. Comparison of cross attention maps between the previous pixel-level
method SelaVPR and our CQVPR. The presented two images are from the
same place. Thanks to the introduced high-level contexts, CQVPR focuses on
discriminative regions (e.g., buildings and towers). While SelaVPR focuses
on less informative regions.

The final re-ranking prediction is derived from this score.
For example, AANet [14] proposes an algorithm to align
the local features under spatial constraints. R2Former [15]
proposes a unified retrieval and re-ranking framework with
only Transformers.

Recently, DINOv2 [16] has achieved impressive perfor-
mance in the VPR task. SelaVPR [10] achieves the state-of-
the-art performance through fine-tuning the DINOv2’s features
to attend to more distinctive regions. AnyLoc [17] directly
adopt the DINOv2 as backbone to establish an universal VPR
solution. However, these methods still do not incorporate the
explicit high-level contexts, making their descriptors overly
rely on visual cues and can not well focus on landmarks during
the local matching process.

B. Segment-level methods

Different from pixel-level methods, segment-level methods
focus on generating features at a more abstract level, such as
object-level, cluster-level and region-level. The global feature
of an image can be seen as a special case of segment-level
features, where the entire image is treated as a single segment.

In the early stage of VPR, aggregation algorithms like
VLAD [18] and Bag of Words (BoW) [19] treat an image as
a set of cluster centroids and generate cluster-level features,
which are then aggregated for obtaining the final global feature
representation. NetVLAD [20] is proposed to make the VLAD
algorithm differentiable, allowing it to be seamlessly integrated
into any neural network. Patch-NetVLAD [21] tends to assign
the NetVLAD pooled feature to each patch of the image. BoQ
[22], which is similar to our method, views an image as a
set of queries and directly outputs the combination of these
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Fig. 3. The overview of the proposed CQVPR. Learnable contextual queries are first randomly initialized and then transformed into context-aware features.
The context-aware features are then fused with pixel-level features from the backbone.

queries as the global feature. Although BoQ also introduces
learned queries, it can not generate pixel-wise features and
therefore can not do local matching. Specifically, the queries
in BoQ are processed into global features. Due to the discrete
nature of these queries, generating local features is infeasible.
In contrast, our proposed CQVPR can generate both global and
local features, providing a more comprehensive and versatile
representation.

Recently, some methods have leveraged the explicit seman-
tic segmentation model to generate object-level features. For
example, [23] adopts the semantic segmentation backbone to
generate features at each semantic class. Similar to Patch-
NetVLAD, SegVLAD [11] leverages the recent SAM [24]
model to assign the NetVLAD pooled features to each seman-
tic object and directly do matching at the object level. Despite
the impressive performance achieved by these segment-level
methods, their features lack spatial, appearance, and contextual
information, which are crucial for distinguishing between
different landmarks.

III. METHODOLOGY

Fig. 3 provides a detailed overview of the Contextual Query
VPR (CQVPR) pipeline. Humans recognize places not just
by landmarks’ appearance and semantics, but also by their
surrounding context, like nearby objects, trees, and streets.
Building on this perspective, CQVPR is proposed to bridge
the gap between pixel-level and segment-level approaches by
integrating visual features with contextual information through
a novel mechanism. CQVPR achieves this by leveraging a set
of learnable queries to encode high-level latent contexts within
an image. Each query captures specific contextual features,
such as object shapes or structural elements, providing a
broader understanding of the scene beyond just the landmarks.

A. Context-aware feature extraction

Given an input image I ∈ RH×W×3, the adapted DINOv2
[10] is employed to obtain the pixel-level feature FV, which is
then combined with context-aware features for obtaining the
global and local descriptors.

We hypothesize that each image can be viewed as K distinct
contextual queries. The learnable contextual embedding T ∈
RK×DT representing K contextual queries is first randomly
initialized, and then updated through a cross attention layer,

T = CA(T, conv(FV)), (1)

where CA(·) is the cross attention layer between queries T,
keys FV, and values FV. FV is the pixel-level feature mentioned
above and conv(·) stands for the convolution layer. Since DC ,
the number of channels of FV, is very large, the convolution
layer here is employed to reduce it to DT for efficiency.
The heatmap H is generated through computing the similarity
between FV and T.

H = ⟨T, conv(FV)⟩, (2)

where ⟨·, ·⟩ denotes the dot product and conv(·) stands for
the same convolution layer in Eq 1. The heatmap H is then
transformed to be the context-aware feature FT.

FT = MLP(norm(H)), (3)

where norm(·) means the normalization along the channel
dimension and MLP(·) denotes the multi-layer perceptron
layer.

B. Global and local descriptors

After the context-aware feature FT and pixel-level feature
FV are obtained, the global descriptor G can be generated as
follows

G = L2(GeM([FV,FT])), (4)

where L2(·) denotes the L2 normalization, and GeM(·) repre-
sents the GeM pooling [25]. [·, ·] indicates the concatenation
along the channel dimension. Based on global descriptors,
a similarity search is performed in the global feature space
across reference images, retrieving the top-k most similar
candidate images to the query image. To obtain the final
predictions, the local descriptors are leveraged for re-ranking
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Fig. 4. The illustration of the context-aware feature extraction module.

these candidates. For each image, the local descriptor L can
be obtained through up-sampling the fused FV and FT

L = L2(up-conv([FV,FT])), (5)

where the up-conv(·) is the up-convolution layer and the L2(·)
denotes the L2 normalization. Local descriptors are leveraged
to do local feature matching [26] and the number of matches
is treated to be the score for re-ranking the top-k candidates.

C. Loss functions

To optimize the model for generating global descriptors, a
global loss Lg based on the triplet loss [20] is proposed to
weakly supervise the overall network,

Lg =
∑
j

l(∥Gq − Gp∥+m− ∥Gq − Gn,j∥), (6)

where l(x) = max(x, 0) is the hinge loss, m is the margin. Gq ,
Gp, and Gn,j denote the global descriptors of the query, pos-
itive, and negative images, respectively, which are computed
through Eq. 6.

For local matching, a mutual matching loss Ll [10] is
leveraged for optimizing the network to produce local de-
scriptors that are easier to be matched. Additionally, to better
supervise the extraction of contextual queries, a contextual
query matching loss Lc is introduced. When two images are
from the same location, the similarity between their learned
contextual embeddings is enlarged, whereas for images from
different locations, the similarity is reduced.

Lc =
∑
k

l(sn,k − sp),

sp =
1

|Mt|
∑

(i,j)∈Mt

TT
q (i)Tp(j),

sn,k =
1

|M′
t|

∑
(i′,j′)∈M′

t

TT
q (i

′)Tn,k(j
′),

Mt = {(i, j) | ∀ (i, j) ∈ MNN
(
TT
q Tp

)
},

M′
t = {(i′, j′) | ∀ (i′, j′) ∈ MNN

(
TT
q Tn,k

)
},

(7)

where Tq , Tp, and Tn,k represent the learned contextual
embeddings of the query, positive, and negative images,
respectively. MNN(·) denotes the mutual nearest neighbor
criteria [26]. l(x) is the hinge loss. Finally, the overall loss
L can be obtained as

L = Lg + αLl + βLc, (8)

where α, β are the hyperparameters used to weight Ll and Lc.

IV. EXPERIMENTS

A. Datasets and Metric
We evaluate the proposed CQVPR on several benchmark

datasets that are widely used in the VPR task, including
Tokyo 24/7, MSLS, Pitts30k, Pitts250k, SPED, AmsterTime
and SVOX. These datasets are selected to cover diverse
environments and challenging conditions such as illumination
changes, viewpoint and seasonal variations.

In the experiments, the performance is measured by using
Recall@N (R@N), which indicates the percentage of queries
for which at least one of the N retrieved database images
falls within a specified distance threshold of the ground truth.
Following previous literature, a threshold of distance is usually
set to 25 meters, except for AmsterTime, where the distance
threshold is set to be 10 meters.

B. Implementation details
Given a 224×224 input image, the backbone would generate

a 1024-dimensional feature FV, which has the spatial resolu-
tion of 14 × 14 pixels. The number of queries, K, is set to
10, and the channel dimension of the contextual embeddings,
DT , is set to 256. Before calculating the heatmap H, a 1× 1
convolution is leveraged to map FV into a 256-dimensional
feature for efficiency. After H is obtained, the MLP layer
would expand the channel dimension of H to DT , namely,
256. The 256-dimensional context-aware feature FT and 1024-
dimensional pixel-level feature FV are concatenated along the
channel dimension to establish the 1280-dimensional feature.

To obtain the global descriptor, the GeM pooling [25] is
leveraged, which is a general pooling mechanism. For the local
descriptor, two 3 × 3 up-convolutions with a stride of 2 and
padding of 1 are employed to up-sample the 1280-dimensional
feature, resulting in a 128-dimensional local descriptor with a
spatial resolution of 61× 61 pixels. In the re-ranking process,
the top-100 candidates are re-ranked to obtain final results.

CQVPR is trained using the Adam optimizer, configured
with a learning rate of 10−5 and a batch size of 4. Training
is terminated when the Recall@5 (R@5) on the validation set
fails to improve for three consecutive epochs. The training
procedure defines positive images as reference images located
within 10 meters of the query image, while definite negatives
are those positioned beyond 25 meters. The margin parameter
m in Eq. 6 is set to 0.1, and α, β in Eq. 8 are both set to 1.



TABLE I
COMPARISON ON PITTS30K, TOKYO24/7 AND MSLS-VAL DATASETS. THE BESTS RESULTS ARE HIGHLIGHTED IN BOLD. THE REPORTED PERFORMANCE

OF BOQ IS DIRECTLY EXTRACTED FROM ITS ORIGINAL PAPER.

Method Pitts30k Tokyo24/7 MSLS-val

R@1 R@5 R@10 R@1 R@5 R@10 R@1 R@5 R@10

NetVLAD [20] 81.9 91.2 93.7 60.6 68.9 74.6 53.1 66.5 71.1
SFRS [27] 89.4 94.7 95.9 81.0 88.3 92.4 69.2 80.3 83.1
Patch-NetVLAD [21] 88.7 94.5 95.9 86.0 88.6 90.5 79.5 86.2 87.7
CosPlace [28] 88.4 94.5 95.7 81.9 90.2 92.7 82.8 89.7 92.0
TransVPR [9] 89.0 94.9 96.2 79.0 82.2 85.1 86.8 91.2 92.4
StructVPR [29] 90.3 96.0 97.3 - - - 88.4 94.3 95.0
GCL [30] 80.7 91.5 93.9 69.5 81.0 85.1 79.5 88.1 90.1
MixVPR [31] 91.5 95.5 96.3 85.1 91.7 94.3 88.0 92.7 94.6
EigenPlaces [32] 92.5 96.8 97.6 93.0 96.2 97.5 89.1 93.8 95.0
R2Former [15] 91.1 95.2 96.3 88.6 91.4 91.7 89.7 95.0 96.2
BoQ [22] 92.4 96.5 97.4 - - - 91.2 95.3 96.1
SelaVPR [10] 92.8 96.8 97.7 94.0 96.8 97.5 90.8 96.4 97.2
CQVPR (Ours) 93.3 96.9 98.1 94.0 96.8 98.1 91.5 96.4 97.0

TABLE II
COMPARISON ON PITTS250K AND SPED DATASETS. THE BESTS RESULTS

ARE HIGHLIGHTED IN BOLD. THE REPORTED BOQ’S PERFORMANCE IS
DIRECTLY EXTRACTED FROM ITS ORIGINAL PAPER.

Method Pitts250k SPED

R@1 R@5 R@1 R@5

NetVLAD [20] 90.5 96.2 78.7 88.3
GeM [25] 87.0 94.4 66.7 83.4
Conv-AP [33] 92.9 97.7 79.2 88.6
CosPlace [28] 92.1 97.5 80.1 89.6
MixVPR [31] 94.6 98.3 85.2 92.1
EigenPlaces [32] 94.1 98.0 69.9 82.9
BoQ [22] 95.0 98.5 86.5 93.4
SelaVPR [10] 95.7 98.8 89.0 94.6
CQVPR (Ours) 96.0 98.7 89.1 95.1

TABLE III
COMPARISON (R@1) ON MORE CHALLENGING DATASETS.

Method AmsterTime SVOX-NIGHT SVOX-SUN

SFRS [27] 29.7 28.6 54.8
CosPlace [28] 38.7 44.8 67.3
MixVPR [31] 40.2 64.4 84.8
EigenPlaces [32] 48.9 58.9 86.4
SelaVPR [10] 54.6 88.8 90.9
CQVPR (Ours) 55.8 90.3 94.1

CQVPR is first trained on MSLS and then subsequently
trained on Pitts30k. For evaluation on MSLS-val, performance
of the model only trained on MSLS is reported. For other
datasets, the performance of the fully trained model is re-
ported.

C. Comparison with State-of-the-Art Methods

As shown in Table I, CQVPR achieves the highest R@1 of
93.3 on Pitts30k, surpassing all other methods, including the
recent SOTA method SelaVPR (ICLR 2024). On MSLS-val,
which includes some suburban or natural scene images and is
therefore prone to perceptual aliasing, our CQVPR still can
achieve the best R@1, demonstrating its ability to produce
more discriminative global and local feature descriptors to
differentiate similar images from different places. CQVPR
also excels in the Pitts250k and SPED datasets, as shown in
Table II. It achieves the highest R@1 on Pitts250k, which
demonstrates its ability of being employed in the large-scale
datasets.

In Table I and II, besides the improvement of the CQVPR,
it is also worth highlighting the metrics saturation observed in
all the above five datasets. Therefore, the proposed CQVPR is
additionally evaluated on more challenging datasets Amster-
Time, SVOX-NIGHT and SVOX-SUN. The proposed CQVPR
achieves improvements of +1.2%, +1.5%, and +3.2% in
R@1 across these three datasets compared to the second-best
method, demonstrating its superior performance in challenging
scenarios with severe modality changes and illumination vari-
ations. This phenomenon proves that the introduced high-level
contexts can improve the robustness of feature descriptors.

D. Visualization results

1) Qualitative results of local matching: In this section, we
present the qualitative local matching results of our CQVPR
method compared to SelaVPR, as shown in Fig. 5. Homogra-
phy verification is employed here for clear visualization.

For two images from the same place, the more matches,
the better. Conversely, for two images from different places,
fewer matches are preferred since all matches in this case
are incorrect. As illustrated in Fig. 5, our method extracts a
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Fig. 5. Comparison of local matching between CQVPR and SelaVPR. (a)
presents the local matching between images from the same place. The more
matches means the better performance. (b) presents local matching between
images from different places. The fewer matches the better.
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Fig. 6. Visualization of the heatmap. For clarity, the number of queries is
set to 3. The place 2 and place 3 are from the same place while place 1 and
place 2 are from different places.

higher number of correspondences between images captured
at the same location. Notably, it establishes a greater propor-
tion of correct matches, particularly by accurately identifying
point correspondences along prominent landmarks, such as
the highway sign in this case. In contrast, when processing
images from different locations, CQVPR effectively reduces
the number of matches, demonstrating its robustness and
discriminativeness.

2) Visualization of the heatmaps: Fig. 6 illustrates the vi-
sualization of the heatmap H, highlighting the latent semantic
regions that each query individually focuses on. It can be found
that each query not only corresponds to the landmark alone,
but takes the surrounding environment into account. This is
different from the segment-level methods. Queries of images
from the same place focus on similar regions, as both describe
the same scene. Conversely, heatmaps of images from different
places show no overlap, as these images correspond to entirely
different places.

TABLE IV
ABLATION ON THE EFFECTIVENESS OF EACH CONTRIBUTION.

DINOv2 fine-tuned
DINOv2

context-aware
features

query match-
ing loss

Pitts30k
R@1 R@5 R@10 R@20

✓ 87.8 93.8 96.3 97.6
✓ 92.8 96.8 97.7 98.4

✓ ✓ 81.2 92.0 93.9 95.3
✓ ✓ 93.0 96.8 97.8 98.7
✓ ✓ ✓ 93.3 96.9 98.1 98.9

TABLE V
ABLATION ON THE CHOICE OF CONTEXT-AWARE FEATURES.

context-aware
feature

Pitts30k
R@1 R@5 R@10 R@20

F∗
T 92.0 96.7 97.7 98.6

FT 93.3 96.9 98.1 98.9

E. Abaltion Study

In this section, a series of ablation experiments are con-
ducted to better understand CQVPR. Experiments are con-
ducted under the same training and evaluation protocol as in
section IV-C.

1) Ablation on the effectiveness of each contribution: In
this section, an ablation study is conducted on Pitts30k to
verify the effectiveness of each of our contributions, as shown
in Table IV. The third row of Table IV presents results of only
using context-aware features to do VPR. The single pixel-
level or context-aware feature can not achieve the optimal
performance. These results demonstrate the complementary
nature of our contributions.

2) Ablation on the choice of context-aware features:
Besides processing the heatmap H to be the context-aware
feature FT, in this section, we try another way to obtain the
context-aware feature

F∗
T = softmax(H) · T, (9)

where F∗
T directly aggregates each query’s embedding with a

weighted summation. As shown in Table V, employing F∗
T

results in worse performance. We attribute this to the fact
that directly aggregating the embedding of each query through
the weighted summation may reduce the robustness of the
features.

3) Ablation on the number of queries: In this section, we
analyze the effect of the number of queries. As shown in Table
VI, setting the number of queries to 10 achieves the best
performance. The reason for this phenomenon may be that
the number of queries should be consistent with the number
of landmarks. Since existing VPR datasets are mainly about
urban scenes, an excessive or insufficient number of queries
could degrade the performance.

4) Efficiency analysis: In this section, we analyze the
efficiency of each component for feature extraction in CQVPR.
Since the local matching process is only leveraged during
inference and follows a standard procedure, it is not included
in the comparison. Notably, the GeM pooling operation is
excluded from the analysis as its parameters and runtime
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Fig. 7. Qualitative results of SelaVPR and the proposed CQVPR are presented. The Red line denotes the false prediction while the green line stands for the
right.

TABLE VI
ABLATION ON THE NUMBER OF QUERIES.

The number
of queries

Pitts30k
R@1 R@5 R@10 R@20

5 92.3 96.6 97.8 98.8
10 93.3 96.9 98.1 98.9
20 92.6 96.5 97.8 98.6

TABLE VII
EFFICIENCY ANALYSIS OF EACH COMPONENT FOR FEATURE EXTRACTION

IN CQVPR.

Module Params (M) Runtime (ms)
fine-tuned DINOv2 354.77 27.0

context-aware feature 0.656 0.9
up-convolution 3.24 1.0

are negligible. The results in Table VII demonstrate that the
fine-tuned DINOv2 module constitutes the majority of the
computational cost. Notably, when referred to Table IV, the
context-aware feature extraction module not only achieves
high accuracy independently but also is highly efficient com-
pared to the fine-tuned DINOv2.

V. CONCLUSION

In this work, we propose the Contextual Query VPR
(CQVPR), which integrates contextual information with de-
tailed pixel-level features. By introducing learnable contextual

queries, our method effectively captures high-level contextual
information about landmarks and their surrounding environ-
ments. Furthermore, we propose a query matching loss to
supervise the context extraction process, ensuring robust and
accurate context modeling. Extensive experiments conducted
on multiple datasets demonstrate CQVPR’s superior perfor-
mance compared to SOTA methods.
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for visual place recognition,” in Proc. Winter Conf. on Appli. of Comput.
Vis., 2023, pp. 2997–3006.

[32] G. Berton, G. Trivigno, B. Caputo, and C. Masone, “Eigenplaces:
Training viewpoint robust models for visual place recognition,” in Proc.
IEEE Int. Conf. Comput. Vis., 2023, pp. 11046–11056.

[33] A. Ali-bey, B. Chaib-draa, and P. Giguère, “Gsv-cities: Toward appro-
priate supervised visual place recognition,” Neurocomputing, vol. 513,
pp. 194–203, 2022.


