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Abstract

We propose a search method for detecting a query audio
signal fragment in long audio recordings. The query sig-
nal is assumed to be captured by a portable terminal, such
as a cellular phone, in the real world. A major problem in
this kind of search is that the features of the query sound
may include distortions due to terminal characteristics or
environment noise. The method proposed here comprises
local time-frequency-region normalization and robust sub-
space spanning. The former is used to make features invari-
ant to additive noise and frequency characteristics, and the
latter to choose frequency bands that minimize the effect of
feature distortions. Experiments using cellular phones in
the real world show the proposed method is effective.

1. Introduction

This paper proposes a similarity-based search method for
an audio signal database. Specifically, we assume that the
database stores music signals and information such as the
title and artist, and then people use a cellular phone to look
up this information when they hear something they like, and
also that the query for the database is a music fragment cap-
tured by the cellular phone. We call this scheme cellular-
phone-based music information retrieval.

In such retrieval, it is desired that the query signal be a
short (e.g. 5 s in length) segment at any arbitrary location
in a music piece. Therefore, our approach is based on sig-
nal matching and time-shifting, as shown in Figure 1. In
the preparation stage, feature vectors are calculated from
the stored signal, which is the music signal database. In
the search stage, feature vectors are calculated from a given
query signal, and the window is applied to the stored feature
vectors. The window size is the same as the query signal
length. Then, the similarity between the query feature vec-
tors and those in the window is calculated. If the similarity

exceeds a threshold value, the query signal is considered to
be detected and located. Then, the window is shifted for-
ward in time on the stored signal and the search proceeds
until all of the stored signals are scanned. Note that the
search here is based on the audio signal rather than sym-
bolic representation [2] such as “notes”, because it is still
difficult to precisely extract notes in musical pieces.

Assuming that hundreds of thousand of music titles are
stored for practical use, and a query signal is captured in
a noisy environment, there are apparently two problems.
One is the computational cost of searching, and the other
is feature fluctuation. For the former, however, a very quick
method called Time-series Active Search (TAS) has already
been developed [1]. Therefore, this paper focuses on the
latter problem.

The feature fluctuation problem has been widely dis-
cussed in the literature. For example, in the research aim-
ing at speech recognition in the real world [5], major ap-
proaches include microphone arrays, spectral subtraction
[4], various noise filtering techniques based on noise mod-
eling, and noise addition to the recognition dictionaries.
However, a method applicable to the present task, music
search by a cellular phone, has not yet been fully investi-
gated. The essential problem is that in cellular-phone-based
music information retrieval the noise characteristics greatly
vary with the user’s environment. For example, as shown
in Figure 2, the power spectrum of a specific music seg-
ment varies significantly depending on the recording situ-
ation and devices used. Our task here is to recognize the
signal as the same one regardless of spectral variations, and
at the same time, to distinguish different sections of music.
For this purpose, we propose a robust search method that
features two techniques to make features invariant to the
terminal characteristics and environment noises. One tech-
nique, local time-frequency-region normalization, is used to
absorb the additive noises and the frequency characteristics.
The other, robust subspace spanning, is used to choose the
frequency bands that minimizes the effect of feature distor-
tions.
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Figure 1. Overview of time-series search
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Figure 2. A segment of a music piece

This paper is organized as follows: Section 2 describes
our methods. Section 3 evaluates the search accuracy, and,
finally, Section 4 gives some conclusions.

2. Method
2.1. Feature extraction

As feature vectors, the zero crossing rates, short-time
power spectrum, LPC cepstrum, and MFCC (Mel frequency
cepstral coefficients) can be considered [3]. In this paper,
however, we simply use the FFT-based short-time power
spectrum, as our focus is on normalization and subspace
spanning. Let P(t, k) be the short-time power spectrum of
the audio waveform z{t) at time ¢ and frequency k, and
P(t) be the vector whose elements are P(t, k). Then, the
i-th frequency feature vector Q(i) is defined as

Q1) = P(si) M

where s is the amount of the window shift for the analy-
sis. In the following experiments, the sampling frequency
was 8000 Hz, the FFT window length was 8192, and the
parameter s = 512.

2.2. Local time-frequency-region normalization

One of the keys to robust music retrieval is feature nor-
malization. Usually, normalization is done by using the av-
erage (or maximum) power in an analysis window. How-
ever, it is obvious that features extracted by such a conven-
tional scheme is not invariant to noises or frequency char-
acteristics effectively.

In our approach, normalization is done with regard to
the local time-frequency region. The k-th normalized fre-
quency feature y(7) is defined as

Wik) = (@) - mR) Q)
where
] Mol
j=—M
1 Mol
U(isk)2 = m (Q(ka)_m(Zk))Q (4)
i=—M

The M is half of window size for calculation of the mean
value and the standard deviation. We chose M = 16 in the
following experiments.

The idea of subtracting the mean value m(¢, k) is similar
to that of CMN (cepstrum mean normalization), which is of-
ten employed in real-world speech recognition systems [5].
This subtraction is expected to cancel the additive feature
fluctuations. Here, we further introduce the normalization
by o(i, k), in order to make the features more invariant to
the complicated frequency characteristics of cellular phone
terminals.

2.3. Robust subspace spanning

The normalized feature vectors are mapped to a sub-
space. The subspace is created so that the feature vector
variation due to the feature distortion becomes small, and
that due to the audio content becomes great, as a result of the
mapping. This is basically done by Principal Component
Analysis (PCA) or Linear Discriminant Analysis (LDA),
and our method is based on PCA. However, instead of per-
forming PCA for all learning vectors together, we calcu-
late the mean vector over the various distortion types for
each original (non-distorted) vector. By doing this noise-
averaging calculation, the subspace is expected to be more
robust than one created only with simple PCA or LDA.

The procedure of our subspace spanning is almost the
same as the standard PCA, except for the noise-averaging
calculation. First, L original signal segments are extracted
from signals such as music CDs. Then, C signals are pre-
pared for each segment. They include the original signal
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and the distorted signals. The distorted signals are obtained,

for example, by playing the original signal in various en-

vironments using a loudspeaker whose characteristics are

known, and then capturing the sound by cellular phones.

The resulting distorted frequency features are written as y,.,

where [ is the order of segments, and ¢ is the distortion type.
Then we calculate the scatter matrix R:

L
R = 23 9@-9) 5)
I=1
where the mean value g, for each class is
1 &
U= 5D Ve ©)
c=1
and the mean value for all classes is
1 &
Vo= 120 ™
=1

Finally, the eigenvectors of R are calculated. The sub-
space is spanned using the eigenvectors ¢, . Let z stand for
the feature vector used for searching. Then, the k-th ele-
ment of the vector is written as

2k = y¢k7 (8)

where y is a normalized frequency feature as described in
Section 2.2.

Note that the proposed method is quicker than using
PCA or LDA without distortion average calculation, when
the same number of learning vectors are used.

3. Experiments

The proposed method was tested with regard to search
accuracy. Figure 3 shows the experiment setup!. We pre-
pared a set of query signals captured by five devices in seven
places in real environments (Table 1), and a database of 200
music pieces (Table 2).

Firstly, we performed two experiments to evaluate the
advantages of the proposed method using limited data sets:
one to evaluate the effect of the proposed normalization
(exp. 1), and the other to evaluate the subspace spanning
method (exp. 2). We then tested the proposed method un-
der more realistic circumstances using full data sets (exp.
3).

All experiments were done in the nearest-neighbor
scheme. The correct retrieval result was defined as the re-
trieval of the correct position rather than just the music title.
The retrieval position was judged correct if the location er-
ror was less than 5 s.

IPHS (Personal Handy-phone System) is a cellular phone service in
Japan, based on 32 kbps ADPCM encoding. PDC (Personal Digital Cellu-
lar system) is a cellular phone service based on 6.7 kbps VSELP encoding.
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Figure 3. Experiment setting
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Table 1. Signals captured for queries

20 minutes (34 titles including rock,
pop, jazz and classical music)
10 minutes for learning and

contents

the other 10 minutes for the tests
4 places (noise-level 1)
an office room, an idling car,

a convenience store, a karaoke bar
3 places (noise-level 2)
a crowded street corner, a noisy coffee shop,

places

a busy-traffic intersection

2 cellular phones (PHS),
3 cellular phones (PDC)

devices

Table 2. Test database

contents | 13 hours (200 titles)

3.1. Effect of local time-frequency-region normal-
ization (exp. 1)

First, we performed a search accuracy test using lo-
cal time-frequency-region normalization of each local time-
frequency area. We used 10-m original signal including 17
titles in the database and 200 query signals of a 10-s in-
terval selected at different positions. We prepared 8 kinds
of query signals, recorded using 2 PHS terminals at the
four noise-level-1 places in Table 1. The total number of
search tests was 1,600. A 0-2000 Hz band was divided
into 8 sub-bands, and 8-dimensional feature vectors were
calculated by the mean power of each sub-band. Then, 80-
dimensional vectors composed of the elements of ten fea-
ture vectors extracted every second was used for the search
test. We used the Euclid distance as the similarity measure.
Figure 4 shows an example of search. Table 3 shows the
search results. The CCR, cumulative classification rate, was
calculated by choosing the five most similar segments. We
compared the proposed method with a method using feature
vectors normalized by using the power of the 0-2000 band.
The proposed normalization achieves higher search accu-

1051-4651/02 $17.00 (c) 2002 IEEE



100

Py
o
o
[

distance (similarity)

i‘Mh;!. i»Jj.l a&’i;ﬁn |4 “n'ilwamu&h:ilza},%
0 2 4 6 8 10 12
time [h]

Figure 4. An example of search

Table 3. Effect of local time-frequency-region
normalization (exp. 1)

accuracy CCR
normalization using power only 29.7% 41.9%
proposed normalization 74.4% 84.4%

CCR: cumulative classification rate

racy than the normalization using the power; the accuracy
improved from 29.7% to 74.4%.

3.2. Effect of robust subspace spanning (exp. 2)

Next, we performed a search accuracy test using sub-
space spanning. We used the 10-m contents for learning
in Table 1. 300 samples for learning were selected on dif-
ferent positions. We performed a search accuracy test us-
ing the other 10-m contents in Table 1. We compared the
proposed method with three methods: a method using fea-
ture vectors calculated by the mean power of each sub-band
as described in Section 3.1, PCA, and LDA. The proposed
method achieves higher search accuracy than the other
methods; the accuracy improved from 74.4% to 79.1%.

Table 4. Effect of robust subspace spanning
(exp. 2)

accuracy CCR
mean power 74.4% 84.4%
PCA 73.3% 84.9%
LDA 67.1% 78.8%
proposed 79.1% 87.8%

Table 5. Search Accuracy (exp. 3)

noise level 1 level 2
cellular phone (PHS) | 83.4% 44.0%
cellular phone (PDC) | 63.6% 32.0%

3.3. Search accuracy (exp. 3)

Finally, we performed a search accuracy test using a
database of 200 music pieces. We used all of the signals in
Table 1 as query signals. In this experiment, 32-dimensional
feature vectors were used. As shown in Table 5, the accu-
racy was 83.4% when the query signals were captured by
cellular phones (PHS) in noise-level-1 places.

4. Conclusion

This paper has described an audio search method to re-
trieve music information by query signals captured with cel-
lular phones. Specifically, we have proposed local time-
frequency-region normalization to make features invariant
to additive noise and frequency characteristics, and robust
subspace spanning to choose frequency bands that mini-
mize the effect of feature distortions. Experiments using
audio signals received in the real world prove the effective-
ness of the proposed method. In a test under realistic cir-
cumstances, for example, the search accuracy was 83.4%
when a 13-h audio recording was searched by query signals
captured by cellular phones (PHS) in the real world. We
consider the results promising for realizing such a music
information retrieval system. Our future work includes an
investigation of non-stationary noise absorption as well as
enlargement of the database scale.

Acknowledgments: The authors thank Dr. Ken’ichiro Ishii
and Dr. Noboru Sugamura for their help and encourage-
ment.

References

[1] K. Kashino, G. Smith and H. Murase. “Time-series Active
Search for Quick Retrieval of Audio and Video”. Proc. of
ICASSP 99, 6:2993-2996, Mar. 1999.

[2] K. Lemstrom and S. Perttu. “SEMEX - An efficient Music
Retrieval Prototype”. MIR 2000.

[3] L. R. Rabiner and B. H. Juang. Fundamentals of speech
recognition. Prentice Hall, 1993.

[4] S. F. Boll. “Suppression of acoustic noise in speech using
spectral subtraction”. [EEE Trans. Acoust., Speech, Signal
Processing, ASSP-27(2):113-120, 1979.

[5] S. Furui. “Cepstral analysis technique for automatic speaker
verification”. [EEE Trans. Acoust., Speech, Signal Process-
ing, ASSP-29(2):254-272, 1981.

1051-4651/02 $17.00 (c) 2002 IEEE



