A QUICK SEARCH METHOD FOR MULTIMEDIA SIGNALS
USING FEATURE COMPRESSION BASED ON PIECEWISE LINEAR MAPS

Akisato Kimura, Kunio Kashino, Takayuki Kurozumi and Hiroshi Murase

NTT Communication Science Laboratories, NTT Corporation
3-1, Morinosato-Wakamiya, Atsugi-shi, Kanagawa, 243-0198, Japan
E-Mail : {akisato, kunio, kurozumi, murase } @eye.brl.ntt.co.jp

ABSTRACT

We propose a quick algorithm for multimedia signal search.
The algorithm comprises two techniques: feature compres-
sion based on piecewise linear maps and distance bounding
to efficiently limit the search space. When compared with
existing multimedia search techniques, they greatly reduce
the computational cost required in searching. Although fea-
ture compression is employed in our method, our bounding
technique mathematically guarantees the same recall rate as
the search based on the original features; no segment to be
detected is missed. Experiments indicate that the proposed
algorithm is approximately 10 times faster than and as accu-
rate as an existing fast method maitaining the same search
accuracy.

1. INTRODUCTION

This paper proposes a method for quick search through a
long multimedia signal stream (a stored signal or a database)
to detect and locate a known audio or video signal (a refer-
ence signal or a query) based on signal similarity. We use
the term “multimedia signal” to refer to an audio or video
signal. The method discussed in this paper is basically ap-
plicable to both. For simplicity, however, we will specifi-
cally focus on the video retrieval in the following sections.

There are many works in the literature on multimedia
signal search or retrieval. One of the major approaches is
based on the symbolic indices that correspond to specific
objects, events, or meanings [1, 2, 3]. For example, when
all the home-run scenes are indexed in a recorded baseball
game, one would instantly find those scenes based on the in-
dices. In this approach, the method to generate such indices
has been a major research issue.

Another approach to signal search is based on signal
similarity. In this approach, it is assumed that a reference
signal is given as a query. The task is thus comparison
between the reference signal and each section of a signal
stored in a database. It is clear that the main research issue
in this approach is speed. Specifically, feature vectors for
audio or video signals often tend to be high-dimensional,
which is not necessarily suitable for the various tree-search

0-7803-7402-9/02/$17.00 ©2002 IEEE

algorithms developed in the database field.

In coping with the high-dimensionality problem, it is
natural to think of dimension reduction, or more generally,
feature compression. Example of feature compression meth-
ods are the subspace method [5] based on Karhunen-Loeve
(KL) transform, project clustering [6], signal decomposition
[7], and singular value decomposition (SVD) [8]. However,
these methods usually degrade search accuracy.

Here, we propose a quick and accurate search algorithm
for multimedia signals based on histogram matching. The
method comprises a feature compression technique and a
distance bounding technique. The feature compression is
done by piecewise linear maps based on Karhunen-Loeve
transform. Distance bounding means limiting the search
space using the lower bounds of distances between signals
while searching. Our method also uses the distance be-
tween the original features and the mapped features, and
this greatly reduces the number of necessary feature com-
parisons while guaranteeing that no segment to be detected
is missed.

Keogh et al. have recently reported a fast signal search-
ing method based on feature compression [9, 10]. Unlike
them, we use a feature histogram as a signal representation.
This is because, as we have already reported [4], the his-
togram itself is a very efficient representation in compari-
son with the original features, such as waveforms, spectro-
grams, color distributions, DFT coefficients, and so on.

This paper is organized as follows: Section 2 overviews
the algorithm called TAS, which is our previous method
based on feature histograms. Section 3 explains the core
part of our new algorithm. Section 4 evaluates the speed
and the accuracy of the algorithm using a recording of real
TV broadcasting. Finally, Section 5 gives conclusions.

2. TIME-SERIES ACTIVE SEARCH (TAS)

Fig. 1 outlines the TAS method. In the preparation stage,
the feature vectors are calculated from both the reference
signal and the stored signal. The feature vector f(k) is writ-
ten as

F(k) = (f1(k), f2(k), F3(K), - - In(K)),

IV - 3656

stored signal

il time
window

3
E
I

I3
=)
)
<
g
£

o
feature vectors

i,

1
|

Fig. 1. Overview of TAS method

where N is the number of dimensions and & is the sam-
ple time. For example, sets of normalized short-time power
spectra are used as a feature for audio signals, and sets of
average RGB values in subimages are used as a video fea-
ture. The feature vectors are then quantized using a vector
quantization (VQ) algorithm. In the search stage, the win-
dows are applied both to the reference feature vectors and
to the stored ones. Next, histograms, one for the reference
signal and one for the stored signal, are created by count-
ing the number of the feature vectors over the window for
each VQ codeword. The distance between these histograms
is then calculated. When the distance falls below a given
value (a search threshold), the reference signal is detected.
In the last step, the window on the stored signal is shifted
forward in time and the search proceeds.

The main point of TAS is that it models a signal using
feature histograms. The distance between the reference and
stored histograms over the windows can be determined in
several ways. In this paper, we use Lo-distance (Euclid dis-
tance), which is defined as

dy = dy(z,y) dzef (zi — i), (1)

1

L

T

where £ = (21,22, ,2)T andy = (y1.92,--»yr)T
are the histograms for the reference and the stored signals,
L is the number of dimensions (i.e. number of VQ code-
word) and (-)7 means transposition of a vector. When the
distance is calculated for one segment, the lower bound of
the distance can be determined by

n-—ng
V2D’

where dy(ny) is the distance when the stored signal win-
dow is at the n;-th frame and D is the window width de-
termined by the number of frames. This means that the his-
togram matching for the sections that give the lower bound
of the distance not smaller than the search threshold can be

dy(n) = da(n1) - (2)

lincar map (1)

linear map (4) linear map (3)

linear map (2)

Fig. 2. Outline of map determination

omitted while guaranteeing that no segment to be detected
is missed. The skip width w is given by

_ [floor(v2D(d2 — 61)) + 1 (ifd2 > 61)
w = .
1. (otherwise)

where floor(z) means the greatest integer less than z, and
61 is the search threshold.

3. METHODS

Although the histogram itself used in TAS can be viewed
as a compressed feature derived from the original feature,
the high-dimensionality problem can still arise. To further
accelerate searching, we here introduce a feature compres-
sion techniqu and a distance bounding technique. The first
step of the former technique is to determine piecewise lin-
ear maps from a stored signal. The second step is feature
compression by mapping original features with piecewise
linear maps. The latter technique, the distance bounding,
also involves a skipping as TAS. The following sections will
describe a series of those steps.

3.1. Map Determination

Fig. 2 outlines this step. Suppose that the original fea-
tures (e.g. color distribution in each frame) were already
calculated on the stored signal and the histograms were also
created with a predefined-length (e.g. 10 seconds) window
corresponding to every feature frame (e.g. 29.97Hz). In the
present method, the window length (i.e. the reference sig-
nal duration) is fixed, while in TAS the length varies from
one search to another. This is because histograms are cre-
ated during the search in TAS case, while histograms for
the stored signal are created prior to the search in our new
method.

Here we note that a histogram sequence is “continu-
ous” by nature in the histogram space, and introduce piece-
wise lower-dimensional representation of the sequential his-
togram path. That is, the histogram path is then equally di-
vided into a certain number (e.g. 1000) of segments. Then,

IV - 3657

stored signal

| _time | feature extraction
window =
k]
2
a
E
o
first features
skip width
histograms
(second features)
X\ e 2|y
. compressed |
‘ tchin features]

Fig. 3. Overview of the proposed method

KL transform is performed with respect to every segment to
create a subspace for each segment. Finally, we determine
maps of sequences with a minimum number of components
such that the contribution rate exceeds a certain value.

3.2. Feature Compression

Feature compression is done by mapping the histograms to
their corresponding subspace. The point here is calculating
mapping distance. The mapping distance is defined as the
distance between the histograms before and after mapping.
Hereafter, we refer to this final form of a signal feature as
the “compressed feature”. Thus, compressed feature vec-
tors finally comprise mapped histograms and mapping dis-
tances.

The processes mentioned above are query-independent
and is done prior to the search.

3.3. Distance Bounding

The following processes are done after a reference signal is
provided.

Fig. 3 overviews the search steps. They are similar to
those of TAS. First, we create a histogram for the query
signal in the same way as for the stored signal (the refer-
ence feature). Next, we transform the histogram according
to each linear map constructed in the previous step, to create
a compressed features. Then, the compressed stored feature
and the compressed reference feature corresponding to the
matching point are matched. In the matching, we calcu-
late the distance between two compressed features & and 3.
This distance gives a lower bound of the distance between
two histograms, x and y:

{da(z,9)) {da(g(x), 9(¥)}’
+Hda(z, g(z)) — do(y, 9(¥))}* (3)
min{d,(z,y)}?, 4)

where g(-) means a linear map corresponding to the match-
ing point, and the minimum is taken over all (z,y) given

g(m)’ g(y)’ d2 (w, g(m)) and dz(y, g(y))

~—

Note that we calculate the lower bound using the dis-
tance in the original histogram space as well as the com-
pressed space. This generally gives a tighter bound in com-
parison with the method only using the information con-
tained in the compressed space.

3.4. Skipping

We can calculate a lower bound of the distance at the n-th
frame from the distance between the compressed feature at
the n1-th frame using (2). Then, we can also calculate the
skip width in the same way as TAS, guaranteeing that no
segment to be detected is missed. This skip mechanism is
still employed in the present method.

4. EXPERIMENTS
4.1. Conditions

In the experiments, we used a video recording of a 24-hour
TV broadcast as a stored signal. The frame rate was 29.97
Hz, and image size was 320 x 240 pixels. The tests were
carried out on a PC (Pentium III 966 MHz). In the feature
extraction, each frame was first divided into 6 (2 x 3) ar-
eas, and then the average of RGB-values was calculatied in
each erea. Therefore, the number of dimensions of an orig-
inal feature vector was 18. Those feature vectors were cal-
culated on every frame, and then quantized. The codebook
size for the feature vectors was 256. Then, histograms of the
feature vectors were created. Therefore the histogram fea-
ture dimension was 256 before compression. Those param-
eter values were empirically chosen. For simplicity, parts
of the stored signal were used as reference signals: ten 15-s
segments were randomly chosen.

4.2. Compression Performance

First, we tested the compression performances. The results
are shown in Fig. 4, where the horizontal axis is the number
of maps and the vertical axis expresses the average num-
ber of dimensions of the mapped features. The contribution
setting is shown in the inset. The data indicate that the aver-
age dimensionality of the features monotonically decreases
as the number of maps increases. For example, the average
number of dimensions decreases to 9.02 when the contribu-
tion rate is 97.5% and the number of maps is 1000.

4.3. Search Performance

We then tested the search speed and the search accuracy. In
the search speed test, two measures were used: the num-
ber of matches and the CPU time for the search. The CPU
time here means the time required for matching. The times
for extracting the original features, making histograms, and
feature compression were excluded because these processes
can be done prior to the search in practical situations.

IV - 3658

250
2008
150
100

50

average dimension of features

0

10°

10' 10? 10
number of maps

Fig. 4. Compression preformance of the proposed method

CPU time | number of | precision

(msec) matches rate(%)

SSDA 840.00 | 2592604 100.0
no bounding 32.78 48145 114
TAS 158.20 18472 100.0
proposed 14.62 21000 100.0

Table 1. Search performance when a 24-h TV broadcasting
was scanned (The recall rate is guaranteed to be 100%)

In the search accuracy test, the precision rate was mea-
sured. The precision rate is defined as the ratio of “the num-
ber of correctly-detected outputs (i.e. local minimum points
in the distance)” to “the number of all outputs (i.e. local
minimum points)” from the algorithm. Note that the recall
rate is guaranteed to be 100% and was not examined here.
The search threshold of 45 was chosen so that there are no
incorrect detections and no misses in TAS. The number of
linear maps was 1000, and the contribution rate was 97.5%.

Table 1 lists the results. The proposed method is over ten
times faster than TAS that does not employ feature compres-
sion. It is natural that the number of matches is increased in
the proposed method in comparison with TAS due to the his-
togram dimension reduction, but the increase is small. The
proposed method also yielded the same accuracy as TAS in
this test. There were no incorrect detections or no misses.

In addition, we compared the proposed method with (1)
“SSDA”, where the Sequential Similarity Detection Algo-
rithm (SSDA) [11] technique was used for feature matching
in the compressed feature space instead of performing skip-
ping as the proposed method, and with (ii) “no bounding”,
which was the same as the proposed method except for the
distance bounding was not performed. Both skipping and
bounding proved to be effective.

5. CONCLUSIONS

We have proposed a very quick search algorithm for mul-
timedia signals based on feature compression and distance
bounding. In our experimentation, the algorithm was over

ten times faster than existing fast methods in terms of CPU
time. Due to space limitations, we mainly discussed a video
example in this paper. The application to the audio signal
will be reported in a separate paper. Future work will in-
clude further investigation of the optimal decision of the di-
mensionality of compressed feature space and the number
of maps.

Acknowledgment : The authors thank Drs. Ken-ichiro
Ishii, Noboru Sugamura and Norihiro Hagita for their help
and encouragement.

6. REFERENCES

[1] H. D. Wactler: “Infomedia — Search and Summa-
rization in the Video Medium”, Proc. of Imagina
2000 Conference, 1983.

[2] Y. Rui et al.: “Content-Based Image Retrievel with
Relevance Feedback in MARS?”, Proc. of ICIP 1997,
Vol.2, pp. 815-818, 1997.

[3] R. Mohan: “Video Sequence Matching”, Proc. of
ICASSP98, Vol. 6, pp. 3697-3700, 1998.

[4] K. Kashino et al.: “Time-Series Active Search for
Quick Retrieval of Audio and Video”, Proc. of
ICASSP99, Vol. 6, pp. 2993-2996, 1999.

[51 E.Oja: Subspace method of pattern recognition, Re-
search Studies Press Ltd., 1983.

[6] C. Agarwal et al.: “Fast Algorithm for Project Clus-
tering”, Proc. of ACM SIGMOD 99, 1999.

[7] K. Wang et al.: “Selective Feature Extraction via
Signal Decomposition”, IEEE Signal Processing Let-
ters, Vol. 4, No. 1, pp. 8-11, 1997.

[8] K. V. R. Kanth et al.: “Dimensionality Reduction for
Similarity Searching in Dynamic Databases”, Proc.
of ACM SIGMOD 98, pp. 166-176, 1998.

[9] E. Keogh et al.: “Dimensionarity Reduction for Fast
Similarity Search in Large Time Series Databases”,
Journal of KAIS, to appear.

[10] E. Keogh et al.: “Locally Adaptive Dimension-
ality Reduction for Indexing Large Time Series
Databases”, Proc. of 2001 ACM SIGMOD on Man-
agement of Data, 2001.

[11] D. I. Barnea et al.: “A Class of Algorithms for Fast
Digital Image Registration”, JEEE Trans. on Com-
puter, Vol. C-21, pp. 179-186, 1972.

[12] M. Sugiyama: “Fast Segment Search Algorithms”,
Technical Report of IEICE, SP98-141, pp. 39-45,
1999 (in Japanese).

IV - 3659

