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Abstract

This paper proposes a novel method to detect three-dimensional objects in
arbitrary poses and sizes from a complex image and simultaneously measure
their poses and sizes. We refer to this process as image spotting. In the learning
stage, for a sample object to be learned, a set of images is obtained by varying
pose and size. This large image set is compactly represented by a manifold in
compressed subspace spanned by eigenvectors of the image set. This
representation is called the parametric eigenspace representation. In the image
spotting stage, a partial region in an input image is projected to the eigenspace,
and the location of thé projection relative to the manifold determines whether
this region belongs. to the object, and what its pose is in the scene. This process
is sequentially applied to the entire image at different resolutions. Experimental
results show that this method accurately detect the target objects.

1. Introduction

Image spotting of three-dimensional (3D) objects has wide applications such as visual
search of a target in security systems or target detection in recognition systems. There are
two approaches used for image spotting. One uses local features such as edges or corners
and matches them with 3D models [1-4]. This method might handle 3D rotation and
scaling of objects, however, extraction of geometric features from noisy natural scenes is
not easy. The other approach uses template matching such as image correlation (matched
filtering) or image subtraction. This approach is insensitive to noise and small distortions.
Our approach is based on this approach.

Template matching is a fundamental task in image processing. Even if we limit the
discussion to searching problems, many vision algorithms using template matching have
been proposed. For example, feature detection using template matching in pyramids [5,6]
or using matched-filter[7] were proposed, however, these methods are developed for

* This research was conducted at Information Science Research Laboratory of NTT Basic
Research Laboratories.
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two-dimensional template matching, so they can not directly deal with 3D objects in a 3p
scene. A 3D object has many appearances depending on the pose and distance betweer,
the camera and the object. If we store all variations of the object appearance and Sequentially
match them with the whole subpart of the input image using conventional template
matching, a vast amount of memory size and computation time is required. Our method ig
related to this exhaustive template matching, however, we use new compact representation
that makes the computation of image correlation quick and efficient. This representation
is called parametric eigenspace. This approach makes it possible to detect a 3D object in
an arbitrary pose and position in the scene.

The idea of parametric eigenspace was first applied for isolated object
recognition[14,15] and tracking[16]. We extend this idea to image spotting, which solveg
the complex situation that the object has a complicated background. This representation
uses two main ideas: KL (Karhunen-Loeve) expansion and manifold representation. The
KL expansion is a well-known technique to approximate images in the low dimensional
subspace spanned by eigenvectors of the image set. This technique is based on principal
component analysis[10,11}, and it has been applied to pattern recognition problems such
as character recognition[12] and human face recognition[8,9]. We call this subspace the
eigenspace. Calculation in this eigenspace reduces computation time. Secondly, appearance
manifold conveniently represents continuous appearance-change due to the change of
parameters such as object pose or object size. The combination of the above two ideas
yields a new continuous and compact representation of 3D objects. We used this
representation for partial image matching, and hierarchical matching at image resolutions
to detect target objects.

2. Learning object models

The appearance of an object depends on its shape, its reflectance properties, its pose, its
distance form the camera, and the illumination condition. The first two parameters are
intrinsic properties of the object that do not vary. The correlation method is relatively
robust to illumination

variations when a brightness >
normalization process is used. View direction
On the other hand, object pose

. oo o0
and camera distance can vary

substantially from one scene
to the next. Here, we represent
an object using the parametric
eigenspace representation
that is parameterized by its
pose and its distance from the
camera.

2.1 Search window

First, for a given object
sample to be learned, we
collect a set of images by
varying pose using a computer
controlled turntable. Then we Fig.1. A learning image set.
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(a) Object region of the learning images (b) Search window
Fig.2. A search window.

segment the object region from each image and normalize its size to some fixed rectangle.
Next, we generate several sizes of images (i.e., scale factor 1, 1.1,1.2, .., & , where &

=1.5) for each pose. These images are used for object learning. We refer to this image set
as the learning image set (Fig. 1). Using all generated images, we design the search
window. The window is the AND area of the object region of all images in the learning
image set. Fig. 2 shows an example of the search window made using the learning image
set. If the AND area becomes too small due to the shape of the object, the pose angle
range is divided to several parts and the procedure is applied separately. This search
window is introduced to eliminate background region and extract only parts of the object
region in the leaning stage. In the image spotting stage, this search window is used to
scan the whole input image.

2.2 Eigenspace

Each learning image is first masked by the search window, then represented by the N
dimensional vector f(,'s (r=1,--,R, s =1,---,5), where the element of the vector is
a pixel value of the image inside the window, N is a number of the pixels, r is a pose
parameter, and 5 is a size parameter. Here, R and S are the total number of discrete poses
and sizes, respectively. We normalize the brightness to be unaffected by variations in
intensity of illumination or the aperture of the imaging system. This can be achieved by
normalizing each image, such that, the total energy constrained in the image is unity. This
brightness normalization transforms each measured image )A(m to a normalized image

X, , where

xr,s =

X

r,s

The covariance matrix of this normalized image vector set is

1 5§ R T
Q= -I—&Zz(x,‘s —o)x,,—¢©)".

s=1 r=1
Here ¢ is the average of all images in the learning set determined as

1 S R

e == ZZx
The eigenvectors €; (i=1,.k) and the corresponding eigenvalues /1,. of Q can be determined
by solving the well-known eigenvalue decomposition problem:

Are, = Qe,.

Although all N eigenvectors of the planning image set are needed to represent images
exactly, only a small number (k << N) of eigenvectors are generally sufficient for
capturing the primary appearance characteristics of objects. The k-dimensional eigenspace
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spanned by the eigenvectors :

{e.e, e}

(A 24, 224,)
is an optimal subspace to
approximate the original
leaning image set in the sense

of I* norm. Computing the

. . €
eigenvectors of a large matrix ! € €

such as ) Q can prove Fig.3. Eigenvectors for a learning image set shown
computationally  very ;, figure 1.
intensive. Efficient algorithms

for this are summarized in
[11,13]. Fig. 3 shows eigenvectors for the object shown in figure 1.

2.3 Correlation and distance in eigenspace
In this section, we discuss the relation between image correlation and distance in eigenspace.
Consider two images X,, and X, that belong to the image set used to compute an

eigenspace. Let the points g and g, be the projections of two images in eigenspace.
Each image can be expressed in terms of its projection as:

N
xm = ngiei + ¢,
i=]
where € is once again the average of the entire image set. Note that our eigenspaces are

composed of only k eigenvectors. Hence, X, can be approximated by the first k terms in
the above summation:

k
i=]

As the result of the brightness normalization described in section 32, x, and X, are
unit vectors. The SSD (sum-of-squared-difference) measure between the two images is
related to correlation as:;

Ix, -x, IP=(x, -x,)"(x,, —x )
=2-2x,"x ,
where mexn is the correlation between the images. Alternatively, the SSD can be
expressed in terms of the coordinates g, and g, in eigenspace:

k k

2 2

Ix, —x, 1IF=ll E 8mi€i — E 8. |l
i=l i=|

_ 2

=g, -g, IP.
So we have:

2 T
g, -g,F=2-2x, "x .

This relation implies that the square of the Euclidean distance between the point g, and
g, is an approximation of the SSD between the images X, and X, . In other words, the
closer the projections are in eigenspace, the more highly correlated are the images. We
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use this property of
eigenspace to calculate
image  correlation
efficiently.

2.4 Parametric manifold

The next step is to construct
the parametric manifold for
the object in eigenspace.
Each image X, in the

R LY
Ii‘.“i:-:;’!s:}:““l., ¢
LIRS 13 2’
= . ';z"o["/

v .‘.l /

a8
object image set is P fl‘."
projected to the eigenspace
by finding the dot product
of the result with each of
the eigenvectors of the
eigenspace. The result is a

point g . in the « : “0s

eigenspace:

g = [e e ]T X Fig.4. A parametric eigenspace representation for the

s ! k1 T object shown in figure 2.

Once again the subscript r
represents the rotation parameter and s is the size parameter. By projecting all the learning
samples in this way, we obtain a set of discrete points in universal eigenspace. Since
consecutive object images are strongly correlated, their projections in eigenspace are
close to one another. Hence, the discrete points obtained by projecting all the learning
samples can be assumed to lie on a k-dimensional manifold that represents all possible
poses and a limited range of object size variation. We interpolate the discrete points to
obtain this manifold. In our implementation, we have used a standard cubic spline
interpolation{17]. This interpolation makes it possible to represent appearance between
sample images. The resulting manifold can be expressed as: g(6,,6,) where 6, and 6,
are the continuous rotation and size parameters. The above manifold is a compact
representation of the object's appearance. Fig.4 shows the parametric eigenspace
representation of the object shown in Fig.1. The figure shows only three of the most
significant dimensions of the eigenspace since it is difficult to display and visualize
higher dimensional spaces. The object representation in this case is a surface since the
object image set was obtained using two parameters. If we add more parameters such as
rotations in other axes, this surface becomes high dimensional manifold.

3 Image spotting

3.1 image spotting using the parametric eigenspace

Consider an image of a scene that includes one or more of the objects that we have
learned, on a complicated background. We assume that the objects are not occluded by
other objects in the scene when viewed from the camera direction.

First, the search window is scanned on the whole input image area (1<x£X;
1<y<Y) and a sequence of the subimages is made. Here, X and Y are sizes of the
input image. The search window eliminates the background effect and extracts only
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subpart of the input images, namely, inside the object region. Each subimage is normalized
respect to brightness as described in the previous section. The normalized subimage at
position (x,y) is represented by vector p(x,y). Next, P(x,y) is projected into the
eigenspace by

h(x,y)=[e, e, ]Tp(x,y).

If this subimage belongs to the learned object, the projected point h(x, y) will be locateq
on the manifold g(6,,6,). Next, we compute the distance between the projected point
and the manifold, using:

d(x,y) = min|h(x,y) - g(6,,6,)|.

If the distance d(x,y) is less than some pre-determined threshold value, the position (x,y)
is'a candidate for the object. After finding the candidate, the minimum peak of the
distance around this position is searched, because the distance of the subimage at (x,y) is
similar to that of the subimage around this position since these images are correlated to
each other. Finally, we can conclude that the position that minimizes the distance is of the
object. The pose and size parameters can be estimated by the parameters 6, and 6, that
minimize the distance.

3.2 Hierarchical image spotting

We assume weak perspective image projection. This means the size of the object is a
function of the distance between a camera and the object. As shown in the previous
section, the parameter 6, in the manifold can deal with size variation of the object
region. However, the dynamic range should be limited, because the effective window
area, that is used for correlation, becomes small if we cover a large range of the size
parameter using the parametric eigenspace representation. In our experiment, we set the
dynamic range of the size
parameter of the manifold
to around 1.5 (

Size range | Detectable

1<6, <1.5). This range Resized input image of manifold | size

of the size variation is not o

enough for many °

applications. Here, to ]

cover a wider range of size

variation, we apply this al == I ~a i’

process hierarchically.
The input image is resized

. -l -2 -
hkel,a.,a ,...,z.ind GID - o ~a’
the same image spotting

procedure is applied for

each resized image. Here, .

Q is set to the maximum / Input xmage/ I~a I~a

value of the parameter 6,
As the result, this method

can cover size variation

continuously. Fig. 5 shows
the range to cover the size

Fig.5. Hierarchical scaling of the input image for
arbitrary size.
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for each resized input image.

3.3 Computational cost

Here, we discuss the computational cost by estimating the number of operations such as
multiplications for each calculation of distance d(x,y). Consider the dimension in the
search window as N, and the number of the templates that corresponds to the number of
the possible poses and sizes as M. And k is the dimension of the eigenspace. In general,
N>M>>k. If we ignore the second order, the number of operations for each step for the
conventional correlation technique is as follows: (1) N multiplications for normalization.
(2) NM multiplications for the correlation. (3) M comparisons to find the maximum
correlation. The total number of operations for each calculation of distance d(x,y) is
N+NM-+M. On the other hand, if we apply the parametric eigenspace method, the operation
in each step is as follows. (1) N multiplications for normalization. (2) Nk multiplications
for the projection. (3) Mk multiplications for distance calculation. (4) M comparisons to
find the minimum distance. The total number of the operations is N+Nk+Mk +M, hence,
the dominant factor is (N+M)k. Assume, N is 6,500 (the pixel number of the search
window), and M is 3,600 (R=360, S=10), and k is 10. These numbers are picked from the
example in our experiments (See section 5). The results show 111,100 operations for our
method, though 23,410,100 operations for the exhaustive correlation method. At the
same time the memory size for the templates can be reduced from NM to Nk words.

4. Experiments
We have conducted several experiments using complex objects to verify the effectiveness
of the parametric eigenspace representation. This section summarizes some of our results.

For example, we have demonstrated three kinds of target objects, a toy cat, a juice
can, and a human face. In the learning step, the object is placed on a motorized turntable
and its pose is varied about a single axis, namely, the axis rotation of the turntable. Most
objects have a finite number of stable configurations when placed on a planar surface.
For such objects, a turntable is adequate as it can be used to vary pose for each of the
object's stable configuration. For a human face, we used a rotating stool instead of a
turntable. When learning, we used a black background to make it easy to segment the
object region from the background. Images of the object are sensed using a 512x480
pixel CCD camera and are digitized as 8bits per pixel. We took 45 images of different
poses for each object for learning. The object region is segmented by the simple thresholding
technique and its size is normalized to 128x128 pixels. Then, we compute a search
window and the parametric eigenspace representation for each object (see Fig. 2). In this
example, the number of pixels of the window is 5400.

Next, we constructed a manifold in the eigenspace according to the procedure in
section 3, and densely resampled the manifold by 360 poses for the rotation parameter
and 10 steps for the size parameter. Totally we have 3,600 resampled points on the
manifold, which are used for searching the manifold. In our experiments, calculating the
distance from the manifold was achieved by finding the nearest neighbor distance from
these resample points.

To test the algorithm, we used 20 images where the target object was placed on the
complicated background. We applied the procedure written in section 4. Fig. 6 (c) shows
the distance map for the image example shown in Fig. 6 (b) and target object shown in
Fig.6 (a). Here, a white pixel means an area of small distance value, and the object is
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(a) Target object

(b) Input image (c) Distance from the manifold

Fig.6. An example of image spotting. (a) a target object,
(b) An input image, (¢) Distance map from the manifold.

Fig.7. Results of image spotting.

possibly there. The computation time is 2 minutes using a SUN workstation SS10. Fig. 7
shows the results for several input images.

We evaluated the number of dimensions of the eigenspace by changing the number
of dimensions. If the number of dimensions is too low, the representation is less accurately
approximated, and many positions that do not belong to the object have a small distance.
This causes errors for image spotting. If the number of dimensions is large enough, the
correct position of the object is detected accurately. We tested this algorithm for 20 test
images, and found a 10 dimensional eigenspace is enough for image spotting of these
objects.

Image correlation methods are robust to noise. We tested for noisy images (i.e.
SNR=20dB). Our method works well for these images. The method is also working well
for small occlusion, because this method uses global features. Consequently, the parametric
eigenspace method is robust for noise and small occlusion.

We can compute an object's pose at the same time of image spotting, by estimating
the pose parameter that minimizes the distance from the manifold. It was shown that the
accuracy of the pose estimation for an isolated object [14] is high using the parametric
eigenspace method. In our case, however, the strong feature of the object boundary can
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not be used, because the boundary

can be obtained after segmentation 30 5
and pose estimation. We evaluate the

pose estimation error for both cases

for the same object: (1) Isolated 201
objects and using image matching
including object boundary, (2) not

isolated object and using only partial 101
matching of the object region. Fig.

8 shows a histogram of the error for -~ nf n ﬁ 0o
both cases for 45 test images. The 0
accuracy of the pose estimation
without using boundary information
is still high, though the accuracy is
a little lower than that using boundary
information.

number of samples

-8-7-6-5-4-3-2-10 12 3 45678
degree

Fig. 8. Histogram for pose estimation
error.

5. Conclusion
In this paper, we described an image spotting method for a three-dimensional object with
a complicated background. This new image representation is called the parametric
eigenspace method. The method detects an object in an arbitrary pose and size in a
natural scene based on 2D image correlation, and simultaneously computes the pose and
size of the object. There are a variety of the appearances for a 3D object depending on its
pose and position. We represent them using a compact image representation based on two
key ideas. One is the KL transform, which approximates the appearance of the object
image set using a small number of eigenvectors to reduce the computation time and
memory size. The other is a parametric representation, which represents the continuous
change of appearance by varying pose and position by a manifold to compute object pose
and position. Image correlation using this representation is hierarchically computed for
different sizes of input images to cover a large dynamic size range of the object.
Experimental results show this method can accurately spot the target object. We
have also shown this method reduces the computational cost compared with the exhaustive
correlation method, and is also robust to noise in input images. Future research will
concentrate on recognizing objects with large occlusion.
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