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Abstract

We address the problem of automatically learning object mod-
els for recognition and pose estimation. In contrast to the tra-
ditional approach, the recognition problem is formulated here
as one of matching visual appearance rather than shape. The
appearance of an object in a two-dimensional image depends
on its shape, reflectance properties, pose in the scene, and the
illumination conditions. While shape and reflectance are in-
trinsic properties and are constant for a rigid object, pose and
ilumination vary from scene to scene. We present a new com-
pact representation of object appearance that is parametrized
by pose and illumination. For each object of interest, a large
set of images is obtained by automatically varying pose and
illumination. This large image set is compressed to obtain a
low-dimensional subspace, called the eigenspace, in which the
object is represented as a hypersurface. Given an unknown
input image, the recognition system projects the image onto
the eigenspace. The object is recognized based on the hyper-
surface it lies on. The exact position of the projection on the
hypersurface determines the object’s pose in the image.

Introduction

For a vision system to be able to recognize objects, it must
have models of the objects stored in its memory. In the
past, vision research has emphasized on the use of geometric
(shape) models [1] for recognition. In the case of manufac-
tured objects, these models are sometimes available and are
referred to as computer aided design (CAD) models. Most
objects of interest, however, do not come with CAD models.
Typically, a vision programmer is forced to select an appropri-
ate representation for object geometry, develop object models
using this representation, and then manually input this infor-
mation into the system. This procedure is cambersome and
impractical when dealing with large sets of objects, or ob-
Jects with complicated geometric properties. It is clear that
recognition systems of the future must be capable of learning
object models without human assistance.

Visual learning is clearly a well-developed and vital com-
ponent of biological vision systems. If 2 human is handed an
object and asked to visually memorize it, he or she would ro-
tate the object and study its appearance from different direc-
tions. While little is known about the exact representations
and techniques used by the human mind to learn objects, it
is clear that the overall appearance of the object plays a crit-
ical role in its perception. In contrast to biological systems,
machine vision systems today have little or no learning capa-
bilities. Hence, visual learning is now emerging as an topic of
research interest [6]. The goal of this paper is to advance this
important but relatively unexplored area of machine vision.
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Here, we present a technique for automatically learning ob-
ject models from images. The appearance of an ob ject is the
combined effect of its shape, reflectance properties, pose in
the scene, and the illumination conditions. While shape and
reflectance are intrinsic properties that do not vary for a rigid
object, pose and illumination vary from scene to scene. We
approach the visual learning problem as one of acquiring a
compact model of the object’s appearance under different illu-
mination directions and object poses. The object is “shown”
to the image sensor in several orientations and illumination
directions. The result is a very large set of images. Since all
images in the set are of the same object, any two consecutive
images are correlated to large degree. The problem then is
to compress this large image set into a low-dimensional rep-
resentation of object appearance.

A well-known image compression or coding technique is
based on principal component analysis. Often referred to as
the Karhunen-Loeve transform (5] [2], this method computes
the eigenvectors of an image set. The eigenvectors form an
orthogonal basis for the representation of individual images
in the image set. Though a large number of eigenvectors may
be required for very accurate reconstruction of an image, only
a few eigenvectors are generally sufficient to capture the sig-
nificant appearance characteristics of an object. These eigen-
vectors constitute the dimensions of what we refer to as the
eigenspace for the image set. From the perspective of machine
vision, the eigenspace has a very attractive property. When
it is composed of all the eigenvectors of an image set, it is
optimal in a correlation sense: If any two images from the
set are projected onto the eigenspace, the distance between
the corresponding points in eigenspace is a measure of the
similarity of the images in the I norm. In machine vision,
the Karhunen-Loeve method has been applied primarily to
two problems; handwritten character recognition {3] and hu-
man face recognition [8], [9]. These applications lie within
the domain of pattern classification and do not use complete
parametrized models of the objects of interest.

In this paper, we develop a continuous and compact rep-
resentation of object appearance that is parametrized by the
variables, namely, object pose and illumination. This new
representation is referred to as the parametric eigenspace.
First, an image set of the object is obtained by varying pose
and illumination in small increments. The image set is then
normalized in brightness and scale to achieve invariance to
image magnification and the intensity of illumination. The
eigenspace for the image set is obtained by computing the
most prominent eigenvectors of the set. Next, all imagesin the
set (the learning samples) are projected onto the eigenspace
to obtain a set of discrete points. These points lie on a hyper-
surface that is parametrized by object pose and illumination.
The hypersurface is computed from the discrete points by in-
terpolation.

Each object is represented as a parametric hypersurface in
two different eigenspaces. The universal eigenspace is com-
puted by using the image sets of all objects of interest to the
recognition system, and the object eigenspace is computed us-



ing only images of the object. Recognition and pose estima-
tion can be summarized as follows. Given an image consist-
ing of an object of interest, we assume that the object is not
occluded by other objects and can be segmented from the re-
maining scene. The segmented image region is normalized in
scale and brightness, such that it has the same size and bright-
ness range as the images used in the learning stage. This nor-
malized image is first projected onto the universal eigenspace
to identify the object. After the object is recognized, the im-
age is projected onto the object’s eigenspace and the location
of the projection on the object’s parametrized hypersurface
determines its pose in the scene.

The fundamental contributions of this paper can be sum-
marized as follows. (a) The parametric eigenspace is pre-
sented as a new representation of object appearance. (b)
Using this representation, object models are automatically
learned from appearance by varying pose and illumination.
(c) Both learning and recognition are accomplished without
prior knowledge of the object’s shape and reflectance. Several
experiments have been conducted using objects with complex
appearance characteristics and the results are very encourag-
ing.

Visual Learning of Objects

Normalized Image Sets

While constructing image sets we need to ensure that all im-
ages are of the same size. Each digitized image is first seg-
mented (using a threshold) into an object region and a back-
ground region. The background is assigned a zero brightness
value and the object region is re-sampled such that the larger
of its two dimensions fits the image size we have selected for
the image set representation. We now have a scale normalized
image. This image is written as a vector % by reading pixel
brightness values in a raster scan manner:
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The appearance (brightness image) of an object depends on
its shape and reflectance properties. These are intrinsic prop-
erties that do not vary for a rigid object. The object’s ap-
pearance also depends on its pose and the illumination con-
ditions. Unlike the intrinsic properties, object pose and illu-
mination are expected to vary from scene to scene. Here, we
assume that the object is illuminated by the ambient light-
ing of the environment as well as one additional distant light
source whose direction may vary. Hence, all possible appear-
ances of the object can be captured by varying object pose

and the light source direction with respect to the viewing di-
rection of the sensor. We denote each image as )‘c(r’,’,) where r is
the rotation or pose parameter, I represents the illumination
direction, and p is the object number. The complete image
set obtained for an object is referred to as the object image
set and can be expressed as:

X = [#1, %o, ...

(2)

Here, R and L are the total number of discrete poses and
illumination directions, respectively, used to obtain the image
set. If a total of P objects are to be learned by the recognition
system, we can define the universal image set as the union
of all the object image sets:
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We assume that the imaging sensor used for learning and
recognizing objects has a linear response, i.e. image bright-
ness is proportional to scene radiance. We would like our
recognition system to be unaflected by variations in the in.
tensity of illumination or the aperture of the imaging system.
This can be achieved by normalizing each of the images in
the object and universal sets, such that, the total energy con-
tained in the image is unity. This brightness normalization
transforms each measured image % to a normalized image X,
such that || x {[[= 1. The above described scale and bright-
ness normalizations give us normalized object image sets and
a normalized universal image set. In the following discussion,
we will simply refer to these as the object and universal image
sets.

The image sets can be obtained in several ways. We as-
sume that we have a sample of each object that can be used
for learning. One approach then is to use two robot manip-
ulators; one grasps the object and shows it to the sensor in
different poses while the other has a light source mounted
on it and is used to vary the illumination direction. In our
experiments, we have used a turntable to rotate the object
in a single plane (see Fig. 1). This gives us pose variations
about a single axis. A robot manipulator is used to vary the
illumination direction. If the recognition system is to be used
in an environment where the illumination (due to one or sev-
eral sources) is not expected to change, the image set can be
obtained by varying just object pose.

Figure 1: Setup used for automatic acquisition of object im-
age sets. The object is placed on a motorized turntable.

Computing Eigenspaces

Consecutive images in an object image set tend to be cor-
related to a large degree since pose and illumination varia-
tions between consecutive images are small. Our first step is
to take advantage of this correlation and compress large im-
age sets into low-dimensional representations that capture the
gross appearance characteristics of objects. A suitable com-
pression technique is the Karhunen-Loeve transform (2] where
the eigenvectors of the image set are computed and used as
orthogonal basis functions for representing individual images.

Two types of eigenspaces are computed; the universal
eigenspace that is obtained from the universal image set, and
object eigenspaces computed from individual object image
sets. To compute the universal eigenspace, we first subtract
the average of all images in the universal set from each image.
This ensures that the eigenvector with the largest eigenvalue
represents the dimension in eigenspace in which the variance
of images is maximum in the correlation sense. In other words,
it is the most important dimension of the eigenspace. The av-
erage of all images in the universal image set is determined
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A new image set is obtained by subtracting the average image
¢ from each image in the universal set:
x2 {x1." —¢, oy, xpa ™ —¢, ..., xg,(F) — c} (5)
The matrix X is Nx M, where M = RLP is the total number
of images in the universal set, and N is the number of pixels
in each image. To compute eigenvectors of the image set we
define the covariance matriz as:
Q2 XxXT (6)
The covariance matrix is ¥ x N, clearly a very large matrix
since a large number of pixels constitute an image. The eigen-
vectors e; and the corresponding eigenvalues A; of Q are to
be determined by solving the well-known eigenvector decom-
position problem:
Aiei = Qe (7

All N eigenvectors of the universal set together constitute
a complete eigenspace. Any two images from the universal
set, when projected onto the eigenspace, give two discrete
points. The distance between these points is a measure of the
difference between the two images in the correlation sense.
Since the universal eigenspace is computed using images of
all objects, it is best tuned for discriminating between images
of different objects.

Determining the eigenvalues and eigenvectors of a large ma-
trix such as Q is a non-trivial problem. It is computationally
very intensive and traditional techniques used for computing
eigenvectors of small matrices are impractical. Since we are
interested only in a small number (k) of eigenvectors, and
not the complete set of N eigenvectors, efficient algorithms
can be used. In our implementation, we have used the spatial
temporal adaptive (STA) algorithm proposed by Murase and
Lindenbaum [4]. This algorithm was recently demonstrated
to be substantially more efficient than previous algorithms.
The result is a set of eigenvalues { \; | i =1,2,..., k} where
{A1 2 X 2 > Ak}, and a corresponding set of eigen-
vectors {e; | i =1,2,...,k}. Note that each eigenvector is
of size N, i.e. the size of an image. These k eigenvectors con-
stitute the universal eigenspace; it is an approximation to the
complete eigenspace with N dimensions. We have found from
our experiments that less than ten dimensions are generally
sufficient for the purposes of visual learning and recognition
(i.e. k¥ < 10). Later, we describe how objects in an unknown
input image are recognized using the universal eigenspace.

Once an object has been recognized, we are interested in
finding its pose in the image. The accuracy of pose estimation
depends on the ability of the recognition system to discrim-
inate between different images of the same object. Hence,
pose estimation is best done in an eigenspace that is tuned to
the appearance of a single object. To this end, we compute
an object eigenspace from each of the object image sets. In
this case, the average ¢(® of all images of object p is com-
puted and subtracted from each of the object images. The
resulting images are used to compute the covariance matrix
QP Once again, we compute only a small number (k< 10)
of the largest eigenvalues {\(P | § = 1,2,...,k} where
(P > 2,0 > > M@}, and a corresponding set
of eigenvectors { e, | i =1,2,.. & }. An object eigenspace
is computed for each object of interest to the recognition sys-
tem.

Parametric Eigenspace Representation

We now represent each object as a hypersurface in the uni-
versal eigenspace as well as its own eigenspace. This new
representation of appearance lies at the core of our approach
to visual learning and recognition. A parametric hypersurface
for the object p is constructed in the universal eigenspace as
follows. Each image x, (P) (learning sample) in the object
image set is projected onto the eigenspace by first subtract-
ing the average image c from it and finding the dot product
of the result with each of the eigenvectors (dimensions) of
the universal eigenspace. The result is a point g, ,(P) in the
eigenspace:
g1 = [e;, €,.....,ex T (x® = c) (8)

Once again the subscript r represents the rotation parame-
ter and [ is the illumination direction. By projecting all the
learning samples in this manner, we obtain a set of discrete
points in the universal eigenspace. Since consecutive object
images are strongly correlated, their projections in eigenspace
are close to one another. Hence, the discrete points obtained
by projecting all the learning samples can be assumed to lie
on a k-dimensional hypersurface that represents all possible
poses of the object under all possible illumination directions.
We interpolate (using cubic splines, for instance) the discrete
points to obtain this hypersurface. The resulting hypersur-
face can be expressed as g(”)(ﬁl, 82) where 8; and 6, are
now continuous rotation and illumination parameters. The
above hypersurface is a compact representation of the object’s
appearance.

In a similar manner, a hypersurface is also constructed in
the object’s eigenspace by projecting the learning samples
onto this space:

£ = [e,), &, ... ,ek(p)]T (xri® — )y (9)

The discrete pointsf, ((P) are interpolated to obtain the hyper-

surface f(P) (61, 82). This continuous parameterization en-
ables us to find poses of the object that are not included in
the learning samples. It also enables us to compute accurate
pose estimates under illumination directions that lie in be-
tween the discrete illumination directions used in the learning
stage.

Recognition and Pose Estimation

Consider an image of a scene that includes one or more of
the objects we have learned. We assume that the objects
are not occluded by other objects in the scene when viewed
from the sensor direction, and that the image regions corre-
sponding to objects have been segmented away from the scene
image. First, each segmented image region is normalized with
respect to scale and brightness as described in the previous
section. This ensures that (a) the input image has the same
dimensions as the eigenvectors (dimensions) of the parametric
eigenspace, (b) the recognition system is invariant to object
magnification, and (c) the recognition system is invariant to
fluctuations in the intensity of illumination.

A normalized image region y is first projected to the uni-
versal eigenspace to obtain a point:

zZ = [e1,92, ..... ,ek]T(y—-c) = [21,22, ..... ,zk]T (10)
The recognition problem then is to find the object p whose
hypersurface the point z lies on. Due to factors such as image
noise, aberrations in the imaging system, and quantization ef-
fects, z may not lie exactly on an object hypersurface. Hence,



we find the object p that gives the minimum distance d, (P
between its hypersurface g (4, 62) and the point z:

4P =66 2~ g (6, 65) | (11)
If d,'" is within some pre-determined threshold value then
the input image is of object p. If not, we conclude that input
image is not of any of the objects used in the learning stage.

Once the object in the input image y is recognized, we
project y to the eigenspace of the object. This eigenspace is
tuned to variations in the appearance of a single object and
hence is ideal for pose estimation, Mapping y to the object
eigenspace again results in a point 2. The pose estimation
problem may be stated as follows: Find the rotation param-
eter §; and the illumination parameter 6; that minimize the
distance dy(P) between the point z(" and the hypersurface
£ of the object p:

B =008 || 2 - €9 (61, 8,) | (12)
The 61 value obtained represents the pose of the object in
the input image. Note that the recognition and pose estima-
tion stages are computationally very efficient, each requiring
only the projection of an input image onto a low-dimensional
(generally less than 10) eigenspace. Customized hardware
can therefore be used to achieve real-time (frame-rate) per-
formance.

Experimentation

Fig. 1 in the introduction shows the set-up used to conduct
the experiments reported here. The object is placed on a mo-
torized turntable and its pose is varied about a single axis,
namely, the axis of rotation of the turntable. The turntable
position is controlled through software and can be varied with
an accuracy of about 0.1 degrees. Most objects have a finite
number of stable configurations when placed on a planar sur-
face. For such objects, the turntable is adequate as it can
be used to vary pose for each of the object’s stable configura-
tions. We assume that the objects are illuminated by ambient
light as well as one additional source whose direction can vary
(see Fig. 1).

Table 1 summarizes the number of objects, light source di-
rections, and poses used to acquire the image sets used in
the experiments. For the learning stage, a total of 4 objects
were used. These objects (cars) are shown in Fig. 2(a). For
each object we have used 5 different light source directions,
and 90 poses for each source direction. This gives us a total
of 1800 images in the universal image set and 450 images in
each object image set. Each of these images is automatically
normalized in scale and brightness to obtain a 128x128 pixel
image. The universal and object image sets are used to com-
pute the universal and object eigenspaces. The parametric
eigenspace representations of the four objects in their own
eigenspaces are shown in Fig. 2(b).

Table 1: Image sets obtained for the learning and recognition
experiments. The 1080 test images used for recognition are
different from the 1800 images used for learning.

Learning samples Test samples for recognition
4 objects 4 objects
5 light source directions 3 light source directions
90 poses 90 poses
1800 images 1080 images

A large number (1080)
the recognition and pose

of images were also obtained to test
estimation algorithms. All of these

.‘(\'\

images are different (in pose and illumination) from the ones
used in the learning stage. Each test image is first normalized
in scale and brightness and then projected onto the universa)
eigenspace. The object in the image is identified by finding the
closest hypersurface. Unlike the learning process, recognition
is computationally simple and can be accomplished on a Sun
SPARC 2 workstation in less than 0.2 seconds.

Fig. 3(a) illustrates the sensitivity of the recognition rate
(percentage of correctly recognized test images) to the num-
ber of dimensions of the universal eigenspace. Clearly, the
discriminating power of the universal eigenspace is expected
to increase with the number of dimensions. For the objects
used, the recognition rate is poor if less than 4 dimensions are
used but approaches unity as the number of dimensions ap-
proaches 10. In general, however, the number of dimensions
needed for robust recognition is expected to increase with the
number of objects learned by the system. It also depends on
the appearance characteristics of the objects used. From our
experience, 10 dimensions are sufficient for representing ob-
jects with fairly complex appearance characteristics such as
the ones shown in Fig. 2.

Finally, we present experimental results related to pose es-
timation. Once again we have used all 1080 test images of
the 4 objects. Since these images were obtained using the
controlled turntable, the actual object pose in each image
is known. Fig. 3(b) shows the histogram of the errors (in
degrees) in the poses computed for the 1080 images. Here,
450 learning samples (90 poses and 5 source directions) were
used to compute 8-dimensional object eigenspaces. This re.
sult demonstrate remarkable accuracy; the absolute pose error
computed using all 1080 images is 0.5 degrees.

Conclusion

In this paper, we presented a new representation for machine
vision called the parametric eigenspace. While representa-
tions previously used in computer vision are based on ob.
Ject geometry, the proposed one describes object appearance.
We presented a method for automatically learning an object’s
parametric eigenspace. Such learning techniques are funda-
mental to the advancement of visual perception. We devel-
oped efficient object recognition and pose estimation algo-
rithms that are based on the parametric eigenspace represen-
tation. The learning and recognition algorithms were tested
on objects with complex shape and reflectance properties. A
statistical analysis of the errors in recognition and pose esti-
mation demonstrates the proposed approach to be very robust
to factors, such as, image noise and quantization. We believe
that the results presented in this paper are applicable to a
variety of vision problems. This is the topic of our current
investigation.
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