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Abstract

Sound source identification is an important problem in auditory scene analysis when multiple sound objects are
simultaneously present in the scene. This paper proposes an adaptive method for sound source identification that is
applicable to real performances of ensemble music. For musical sound source identification, the feature-based methods
and template-matching-based methods were already proposed. However, it is difficult to extract features of a single note
from a sound mixture. In addition, sound variability has been a problem when dealing with real music performances.
Thus this paper proposes an adaptive method for template matching that can cope with variability in musical sounds.
The method is based on the matched filtering and does not require a feature extraction process. Moreover, this paper
discusses musical context integration based on the Bayesian probabilistic networks. Evaluations using recordings of real
ensemble performances have revealed that the proposed method improve the source identification accuracy from 60.8%

to 88.5% on average. © 1999 Flsevier Science B.V. All rights reserved.
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1. Introduction

In recent years scene analysis based on acoustic
information, termed auditory scene analysis, has
received renewed interest. Auditory scene analysis
means recognizing many acoustic events occurring
simultaneously (Bregman, 1990; Cooke, 1991).
From the engineering point of view, a specific
feature of the auditory scene analysis problem is
that noise and signals are not defined uniquely in
advance; a computer system for auditory scene

* Corresponding author. Tel.: +81-462-40-3568; fax: +81-462-
40-4708; e-mail: kunio@ca-sunl.brl.ntt.co.jp

! Speech files available. See http:/fwww.elsevier.nl/locate/
specom.

analysis must handle multiple ‘signals’ simulta-
neously. This is in contrast to problem definitions
in the conventional sound recognition tasks, such
as speech recognition, where the signal is defined
as human speech and noise is defined as all non-
speech sounds.

In order to deal with many simultaneous sig-
nals, sound source separation problems have been
addressed since as early as the 1970s. Approaches
using microphone arrays have been one of the
major research streams (Mitchell et al., 1971;
Flanagan et al., 1985), and harmonic selection is
another major method (Parsons, 1976; Nehorai
and Porat, 1986). A hybrid approach that inte-
grates the microphone-array approach and the
harmonic selection approach is also found in the
literature (Nakatani et al., 1995). In addition,
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independent component analysis has applied to
sound source separation by many authors under
the term of blind source separation (Cardoso,
1989; Bell and Sejnowski, 1995; Lee et al., 1997).

However, sound source separation is only half
of the auditory scene analysis problem. The other
half is sound source identification, which means
recognizing the name or label of each acoustic
event. In comparison with sound source separa-
tion, relatively limited amount of work has been
reported on this problem (Lesser et al., 1993; Ellis,
1996).

Thus this paper addresses the sound source
identification problem for sound mixtures. En-
semble music was chosen as an example target
domain. The problem is to recognize the name of a
musical instrument playing each musical note.
This identification will be necessary in application
systems such as automatic music transcription
systems and signal-to-MIDI (Musical Instrument
Digital Interface) conversion system. We consider
that the present work for ensemble music is a step
towards auditory scene analysis in general.

The approach towards the music recognition
task has also had a long history. Early work in-
spired by frequency-analysis techniques concerns
the transcription of a single-pitched melody such
as a vocal solo (Piszczalski and Galler, 1977; Nii-
hara and Inokuchi, 1986). Later, recognition sys-
tems for multiple-pitched music performed by a
single musical instrument (e.g., piano solos) were
proposed (Katayose and Inokuchi, 1989). How-
ever, few works have addressed the recognition of
multiple-pitched music performed by multiple
kinds of musical instruments (e.g., such as by a
chamber ensemble), although several attempts can
be found in the literature (Mont-Reynaud, 1985;
Chafe and Jaffe, 1986; Brown and Cooke, 1994,
Kashino et al., 1995a). Consequently, music rec-
ognition systems which can deal with ensemble
music played by many musical instruments si-
multaneously, and give reasonable accuracy, have
not yet been realized.

For the sound source identification problem,
the approach first considered may be one based on
the timbre feature such as discriminant analysis.
For example, Cosi et al. (1994) proposed a method
to recognize musical timbre based on an auditory

model and the self-organizing neural network
model. Brown and Cooke (1994) reported a timbre
classification method using a two-dimensional
timbre space. When applied to real music perfor-
mances, however, methods that use only timbre
features may not sufficiently accurate. This is be-
cause multiple notes are simultaneously played
most of the time in music, and therefore frequency
components from different instruments overlap.
When the components overlap, it is difficult to
extract the timbre feature for each note.

Thus a template-matching-based approach,
which is based on matching between an input
spectrum pattern and a mixture of the spectrum
pattern of each note stored in advance, and a hy-
brid method of the template-matching-based ap-
proach and the discriminant analysis have been
proposed (Kashino and Tanaka, 1993; Kashino et
al., 1995a,b). Although these matching-based
methods alleviate the harmful impacts caused by
the overlapping frequency components, the meth-
ods are adversely affected by variations of timbres
caused by individual differences of musical in-
struments and expressions of performances. In
fact, the music recognition system proposed by
Kashino et al. (1995a) has been applied only to
artificial performances synthesized by a sampler. *

Thus this paper proposes the template adapta-
tion technique for an adaptive template matching.
This adaptation is to cope with variability of a real
musical signal due to the individual differences of
musical instruments and musical expressions. This
paper also discusses integration of musical context.
Adaptive template matching uses only local in-
formation, and therefore matching results can still
be ambiguous. The basic idea of musical context
integration is to extract the streams of melodies
and utilize them in order to improve the accuracy
of sound source identification.

The rest of this paper is organized as follows.
Section 2 overviews the processing architecture.
Section 3 discusses template adaptation. Section 4
then proposes a method of constructing a graph,

2 A sampler is an electronic musical instrument that stores the
waveforms of various musical instruments and plays them back
on MIDI input from a computer.
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which we call MSN (music stream network), that
represents the streams of melodies. Section 5 fur-
ther discusses how to update a posteriori proba-
bility for each sound source using the MSNs.
Section 6 presents some examples of system be-
haviors and evaluates the accuracy of the pro-
cessing. Finally Section 7 will conclude this paper.

2. System architecture
2.1. QOverview

Since a sound source identification system must
deal with many ‘signals’ simultaneously, it is nat-

ural to build a system by accumulating processing
modules, each of which tries to identify a specific

Input signal

L—l—l
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target sound as a ‘signal’, regarding other sounds
as ‘noise’. Such modules should interact with each
other to create a valid interpretation of signals.
This is because the multiple interpretations made
by the multiple modules may conflict with each
other.

Thus we propose a system architecture based on
a multi-agent scheme, as shown in Fig. 1. An agent
is a simple-functioning processing module that
interacts with each other (Maes, 1990). Here the
agent function is detecting and identifying a spe-
cific sound in charge from a mixture.

The sound source identification system assumes
that the input is an ensemble music signal divided
into frames and a list of fundamental frequencies
included in each frame. As output, the system
creates a symbolic representation that is similar to

Sound source identification system
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Fig. 1. The Ipanema architecture.
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a musical score. The input frame length is not
fixed; it is assumed that a new frame is created with
each new onset of a musical note.

The sound source identification system consists
of the agent network, a mediator of the agents,
and an information integrator. However, our
current implementation includes an onset detec-
tion module (called an initiator) and a funda-
mental frequency extraction module (called a
promoter), as shown in Fig. 1. The initiator di-
vides an input signal into frames and sends the
waveform of each frame for subsequent process-
ing. It tries to find the onset of a sound and creates
the frames. The promoter performs frequency
analysis on the waveform received from the initi-
ator and extracts fundamental frequency compo-
nents. There may be many of these. This module is
called a promoter because it assists the agent ac-
tivities. We call the architecture shown in Fig. 1,
including the initiator and the promoter, Ipanema.

2.2. Agents

In our architecture, each agent in the agent
network is a processing module that corresponds
to a single sound source (a flute, for example).
Each agent maintains a bank of waveforms, each
of which is a waveform of a single note of a specific
pitch and expression.

Each agent examines the input fundamental
frequencies and checks whether the frequency is
within the pitch range of the sound source corre-
sponding to the agent. If the agent i judges that
there is a possibility of being included, then the
agent suggests a waveform r;,, applying a phase
tracking method to one of the waveforms stored in
the bank, as discussed in Section 3. If the agent
infers little possibility of being included, then it
takes no action.

The agents that suggested waveforms then
modify them to minimize the squared error be-
tween the input signal and the sum of the sug-
gested waveforms. To do this, the »; waveforms are
written to the common M-Bus (mediation bus)
and passed to the mediator. The agents then wait
for the mediator to send back answers. The an-
swers of the mediator are sets of filter coefficients
that optimally modify .. Each agent reads the

answer from the mediator via the M-Bus and then
generates an FIR filter with the returned coeffi-
cients to calculate a modified waveform y;. These
mechanisms will be further discussed in Sec-
tion 2.3.

The final output of the agent is the waveform y;
and a predetermined information label for the
waveform; for example, ‘Flute C4’.

2.3. Mediator

As explained in Section 3, here mediation of
agents is reduced to the problem of matrix calcu-
lation. Thus the mediator first receives the r; from
agents via the M-Bus. It then calculates the opti-
mal filter coefiicients for each agent (Eq. (4)). Fi-
nally the mediator sends the coeflicients back to
each agent using the M-Bus.

2.4. Information integrator

The information integrator is a post processing
module that revises the output of the system. It
receives an information label and an output
waveform from each agent and judges which
sound sources are present. Basically, the judgment
is made based on the correlation between the agent
output waveform and an input signal. However,
since the initiator, promoter, and the agents in the
agent network operate on a frame-by-frame basis
and only local information is used, the matching
results can still be ambiguous. Therefore, the in-
formation integrator treats this correlation as hy-
potheses rather than final results, and verifies these
hypotheses by integrating musical context. The
mechanism of this information integration is dis-
cussed in Sections 4 and 5.

3. Template adaptation

This section focuses on the template adaptation
calculated by the agent network and the mediator.

3.1. Template filtering

An input acoustic signal z(k) is represented as a
sum of waveforms y,(k), where n specifies sound
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source and & represents time. Our problem can be
formulated as minimization of J in the equation

N—1 2
J=E {z(k)—z yn(k)} : (1)

where N is the estimated number of sound sources,
which is not predefined, and E denotes the tem-
poral average. For y,(k), we employ one of the
simplest models as depicted in Fig. 2. The model
can be written as

M—1

yn(k) = Z

m=0

ho(m) ry(k —m), (2

~—

where £ is the filter impulse response, » is a tem-
plate waveform, and M is the length of impulse
response length, that is, the number of taps when
H is an FIR filter.

In this model, the fixed sets of % and » cannot be
predetermined. This is because there is a diversity
of waveforms even for one specific sound source.
Consider the example of musical instruments in
Fig. 3. Both waveforms (a) and (b) are piano
sounds. Both waveforms are different in terms of
both the phase and spectral power information.
Therefore we need an adaptive mechanism. Eq. (1)

is rewritten using Eq. (2) as
2
h,(m) r,(k — m)} )

N-1
J=F {z
(3)

The necessary condition for J to hold the min-
imum value over 4,(m) is that the partial deriva-
tives 0J/0h,(m) are O for all » and m. Using this
condition, it is straightforward to derive N x M
simultaneous linear equations as follows:

S
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Fig. 2. A sound source model that consists of a template » and
an FIR filter H. Here, H modifies the waveform of the original
template » to cope with variation of a sound.
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Fig. 3. Template filtering. (a) The input signal from a Yamaha
piano. It also shows the F4 note between 160 and 195 ms after
onset; (b) the original piano template (which is Boesendolfer’s)
with the same pitch and time portion as (a); (c), (d) and (e)
templates processed by the template filtering method. They are
produced by a piano, flute and violin template, respectively; (c)
is obtained by filtering waveform (b). Note that (c) has a higher
correlation with (a) than either (d) or (). In all cases, a 160 tap
filter and 48 kHz sampling rate was used.
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where i:{O,l,...,N—l} and j={0,1,...,
M — 1}. Since the number of equations (N x M)
equals the number of unknown parameters
(h,(m)), the problem is reduced to the inverse
matrix calculation.

3.2. Phase tracking

For the above optimization scheme to be ef-
fective, the fundamental frequency of each tem-
plate » must be exactly the same as the frequency
included in z. This is because a linear filter, H,
cannot change the frequency of an input signal.
Therefore we need a phase tracking (i.e. instanta-
neous frequency tracking) method, which changes
the phase of template » in accordance with the
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phase of the corresponding sound source signal

included in the input signal z.

If the input signal is not a mixture of multiple
sounds but a single sound, adaptive pitch tracking
methods already invented can be used. However,
such signal processing methods are not directly
applicable to a sound mixture where multiple
pitches are present. Thus we have devised a simple
algorithm to implement phase adaptation. The
algorithm consists of the following five steps:

1. For each fundamental frequency component
given in the input, choose ¢; which is a possible
template for a sound included in z. As men-
tioned earlier, this choice is based on the pitch
range of the instrument.

2. Apply a narrow-band bandpass filter to ¢,
using the average fundamental frequency of
each ¢; as the bandpass filter center frequency.
Here it is assumed that the fundamental fre-
quency fluctuation is small with regard to the
bandpass filter Q value. For each time sample,
store the phase of the output waveform of the
bandpass filter. Let p,;(k) denote the phase at
time £.

3. Apply the same bandpass filter, as applied to g;,
to the input z, and store the phase information
for each fundamental frequency as p.;(k).

4. Calculate the required time shift Ak, (k). Be-
cause the phase difference Ap, (k) is given by

Ap,. (k) = p-i(k) — pgi(k), (5)
the time shift Ak, ;(k) is calculated using
Js
(k) = ==~ Ap, (k). 6
Ak (k) = 52— B, (K (©)

fs 1s the sampling frequency and f_; is the ap-
plied bandpass filter center frequency.
5. The modified amplitude r; at time % is given by

ri(k) = CIi( k— Akqj(k))- (7)

This algorithm is depicted in outline in Fig. 4.

As discussed so far, the proposed method de-
composes the sound variability into two factors:
(1) the fundamental frequency fluctuations and (2)
overtone phase and amplitude fluctuations. First-
ly, the phase tracking method absorbs the former
fluctuations and then the template filtering deals
with the latter fluctuations.

® Mol o ol ol b o ean
VEANN N/
IOV O LA AT O A L

(c)

Fig. 4. Waveforms demonstrating phase tracking. (a) The input
waveform z; (b) a template before phase tracking g;; (c) a
template after phase tracking r;.

4. Music stream extraction

When a listner is presented with an ensemble
music performance by a flute and piano, it will
usually not be difficult for the listener to answer
that the performance is performed by a flute and
piano, even if the listner has not experienced spe-
cial music training. However, if the presented
music is a short-time fragment (0.3 s for example),
the task becomes difficult. This implies that a hu-
man listener uses musical context to interpret the
acoustic signals.

There are several ways to integrate musical
context information for sound source identifica-
tion; for example, a probabilistic network ap-
proach. The probabilistic method is widely used in
the speech recognition field and proven to be very
powerful in representing temporal transitions of
phonemes or words.

Here we consider a Bayesian probabilistic net-
work to represent a melody stream. The Bayesian
network formulated by Pearl (1986) is a tool for
calculating the a posteriori probabilities when a
series of events related to each other are observed.
It has already applied successfully to music rec-
ognition (Kashino et al., 1995b).

Consider two musical notes ny, n;_; (k denotes
the order of the onset times of these notes, n;_;
precedes n;). We define Z(ny, 1) using

Z(ng, i) = WZ{ —w;log P, mi_1)}, (8)

where i is a suffix that enumerates the factor of Z,
P is a conditional probability of the occurrence of
the n;_; to ny transition in a given musical context,
and w; (> 0) is a weight for each factor. Since the



K. Kashino, H. Murase | Speech Communication 27 (1999) 337-349 343

component —log P, is self-information delivered
by the transition from n;_, to n;, Z can be viewed
as a weighted sum of self-information. Thus Z
reflects the infrequency of the transition for these
two notes. Therefore we define the ‘music stream’
as the sequence of musical notes that gives a local
minimum of Z.

The term W is a time window that is defined as

W(dt) = exp (?), 9)

where d¢ is the difference of onset times of these
two notes, and 7 is a time constant. Unlike ordi-
nary time windows, ¥ becomes greater as ot in-
creases.

In this paper, the following three factors of Z
are considered: (P,) transition probabilities of
musical intervals, (P;) transition probabilities of
timbres, and (P;) transition probabilities of musi-
cal roles. These factors are now discussed.

4.1. Musical interval transitions

In tonal music, musical intervals of note tran-
sitions do not appear equally; some intervals are
more frequent than others. Thus the pitch transi-
tion probability in a melody can be utilized as P, in
Eq. (8). To obtain P, we analyzed 397 melodies
extracted from 196 pop scores and 201 jazz scores,
and calculated the probabilities of musical inter-
vals. The number of note transitions was 62 689.
Fig. 5 shows the obtained probabilities. The
analysis was made only for principal melodies and
may not be precisely valid for the other melodies
such as bass-lines or the parts arranged for poly-

Transition
Probability [%]

20

10

ol
14 12 10 8 6 4

2 0 2 4 6 8 10 12 14
— «—f—= 4 Interval (semitone)

Fig. 5. Probabilities of musical intervals.

phonic instruments such as pianos. For simplicity,
however, we used probabilities shown in Fig. 5 as
P, for all cases.

4.2. Timbre similarity

It is reasonable to suppose that a sequence of
notes tends to be composed of notes that have
similar timbres. To incorporate this tendency, we
define a distance measure between the timbres of
two notes and estimate the probabilities that two
notes that are a certain distance apart sequentially
appear in a music stream. These probabilities form
P, in Eq. (8).

The distance between timbres is defined as the
Euclidean distance between the timbre vectors. A
timbre vector is a vector whose elements are the
activity levels of agents, that is, the correlation
values between the output from the agents and the
corresponding portion of the input signal. Thus
the number of elements of the timbre vector equals
the number of agents in the agent network in-
cluding non-activated agents. The distances be-
tween successive notes in a sequence are translated
into probabilities using a normalized histogram as
explained in Fig. 6. This histogram models the
distribution of timbre vectors for notes. In the
current implementation, we assumed the normal
distribution with an empirically determined stan-
dard deviation instead of statistically creating the
histogram based on the timbre vector sampling.

Probability

4 —
d Distance

Fig. 6. Conversion from distance to probability. The calculated
distance d is converted to P, which is the probability of ap-
pearance of the distance in a sequence of musical notes, by
using a histogram of distances. The histogram is normalized so
that the total degrees sum to one.
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4.3. Musical role consistency

In ensemble music, a sequence of notes can be
regarded as carrying a musical role such as a
principal melody or a bass-line. To introduce such
musical semantics, we evaluate the probability P;
that a note plays a musical role in a sequence of
notes. Specifically, here we consider the highest
pitch and the lowest pitch in simultaneous notes as
‘roles’. For simplicity, we empirically approxi-
mated P;:

P3 =ar+b, (10)

where a and b are constants, and r is the rate of the
highest (or lowest) notes in the music stream under
consideration. Eq. (10) represents a musical heu-
ristic that the music stream formed by the highest
(lowest) notes tends to continue to flow to the
highest (lowest) note.

4.4. Creating MSNs

Using Eq. (8), the networks that correspond to
sequences of musical notes, which we call music
stream networks (MSNs), are built by the
following procedure. Fig. 7 shows the status of
nodes when the new node n, was just created.
Firstly, possible links terminated at a new node is
considered; each time a new node is created, the
system selects the node that gives the minimum Z
value defined by Eq. (8). Then, possible links
originated from the selected node are considered;
if the link between the selected node and the
new node (n;) also gives the minimum Z value
over the other possible links from the selected
node, then the link between the selected node
and the new node becomes an element of the
musical stream. Thus the networks are built by
connecting nodes that give the locally minimum
Z value.

5. Updating probabilities based on MSNs

In this section, sound source identification with
the music stream information is defined as the es-
timation of the a posteriori probabilities of sound
sources when each note is observed.

-
'y 4 n.,

n

Fig. 7. A procedure for creating MSNs. Step 1. When a new
node (n;) is created, the system first chooses the link that gives
the minimum Z value (/) among the candidate links (/1. . ., L4).
Step 2. The system then evaluates Z values for the link candi-
dates (gi,...,g3) from the selected node (#;_3), to choose the
link with the minimum Z value (g(). Step 3. If g, and /| are
identical, the link composes a music stream. If a music stream
from n;_3; was already formed in a direction other than g, the
stream is cut; the direction of the music stream is changed to

gi(=1h).

5.1. Employment of Bayesian network

Consider a singly connected directed graph. The
direction of a link corresponds to a parent-child
relationship. Each node encodes a set of hypoth-
eses and each link encodes a matrix whose ele-
ments are the conditional probabilities of child
hypotheses when the parent hypotheses are true.
For example, when a parent node 4 holds a set of
hypotheses a; {i=1,2,...,N) and a child node B
has b; (j=1,2,...,M), the link between these two
nodes should include an M x N matrix whose el-
ements are P(b;|a;).

Here we use the term ‘belief” for a dynamic
conditional probability for a hypothesis held at
each node, to distinguish it from the static condi-
tional probabilities given at each link. For
example, a belief vector BEL(4) stands for an
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N-dimensional vector whose elements are the
conditional probabilities for the hypotheses g; (i =
1,2,...,N) maintained at node 4 when the belief
vectors at the nodes other than 4 are given. The
specific advantage of the Bayesian network is that
each element of BEL(4) is decomposed into two
components, each of which can be calculated effi-
ciently. That is, it is shown that the BEL(4) is
written as

BEL(4) = o A(4) n(4) , (11)

where o is a normalization constant, and A(4) and
n(A) are the N (= the number of hypotheses at
node 4)-dimensional vectors. The multiplication of
vectors refers to an operation to obtain a vector
whose elements are the products of the corre-
sponding elements of these vectors. The main
point here is that the A(4) and n(4) in Eq. (11) can
be recursively calculated (Kashino et al., 1995a;
Pearl, 1986), which means that A(4) is calculated
using 4 vectors at the descendants and the siblings
of 4, and n(4) is calculated using 7 vectors at the
ancestors of 4. Therefore the BEL vector at each
node is efficiently obtained by two-path informa-
tion propagation: from the children to the parents
and from the parents to the children.

5.2. Information propagation on MSNs

Fig. 8 depicts how information is propagated
through the MSN. In Fig. 8, the link / is just
created as a fragment of the music stream by the
procedure described in Section 5.1. A square
stands for a belief node, which is a node holding
the BEL vector, while a trapezoid denotes a data
node, which is a node holding the observed data as
the A vector. That is, the 4 vector at the data node
is the timbre vector, each element of which is a

A Data node l:] Belief node

el §op,
JC / time
A== P
i) .y G
A A A

Fig. 8. Information propagation on MSN.

correlation value between the agent output y; and
the corresponding part of the input waveform z.

The A vector at the node »y is initially identical
to the 4 vector of the corresponding data node.
When the link / is created, however, the n vector
for node n, is calculated using the © vector at node
n_ and is propagated to n,. Then the 4 vector for
node n;_; is calculated using the A vector at node
n,_1 and propagated to n;_,. The 4 vector at n;_; 1s
further propagated to the parents; the propagation
continues until a node that has no parents to de-
liver A. For each node, a BEL vector at that mo-
ment is obtained as the ‘product’ of the A vector
and the & vector.

As mentioned earlier, the propagation process
requires the conditional probabilities of child hy-
potheses when the parent hypotheses are true. In
the following experiments, we simply defined the
conditional probability P(#,|h;), that is a proba-
bility of sequence of two hypotheses #; and 4; given
that 4; is true, as

B(1+c) if h,is the hypothesis for the
P(hjlh;) = same instrument as 4;,
B(—c) otherwise,
(12)

where ¢ (0 < ¢ < 1/2) is a weighting coefficient and
B is a normalization constant.

6. Evaluations

We have tested the proposed method using re-
cordings of real ensemble performances listed in
Table 1. These music were arranged as three-part
ensembles and each part was single-pitched. Since
this experiment focused on the precision of sound
source identification rather than note extraction,
we manually fed the system in advance with the
correct pitch and time for each note.

Templates used in the adaptive template
matching stage were played by different manufac-
turers’ instruments from the ones used in the re-
cording of the test music. We stored piano, flute,
and violin templates; this means that the system
presumed that each input note was played by ei-
ther piano, flute, or violin. For each instrument,
one template waveform is stored for each semitone
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over the pitch range of the instrument. The num-
ber of stored templates were, therefore, 40 for a
flute (59-98 in MIDI note number), 88 for a piano
(21-108), and 41 for a violin (56-96).

The number of simultaneous notes for each
instrument was not given to the system. The
number of parts was also unknown. The number
of taps in the template filtering was 20 for those
experiments where the template filtering was in
action (the ‘template-filtering-on’ condition). The
values of the parameters were chosen as listed in
Table 2.

An example of the system in operation is shown
in Figs. 9-11. The input here is a monaural re-
cording of a real ensemble performance of ‘Auld
Lang Syne’, a Scottish folk song, arranged in thee

parts and performed by a violin, a flute, and a
piano. Fig. 9 display the recognized music streams
as well as the status of nodes for the beginning part
of the song. The bars in each node indicate the
belief vector at the node. The links between the
nodes are the extracted music streams; it is shown
that each part is correctly recognized as the music
stream. The thickness of link lines corresponds to
its Z value (Eq. (8)); a thick line stands for a link
with the low Z value.

Figs. 10 and 11 are the score-like system out-
puts before and after introduction of the music
streams, which demonstrate the impact of the
music streams. Here all notes are displayed as
quarter notes in a real time scale, because we do
not introduce a note-value identification process.

Fig. 9. Nodes after introduction of music streams. Squares stand for notes. Ordinate: pitch; abscissa: time.
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Fig. 10. Output of the system before introduction of music
streams. Arrows show the incorrectly source-identified notes.
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Fig. 11. Output of the system after introduction of music
streams.

Comparing Fig. 11 with Fig. 10, it is observed that
the several misidentified notes found in Fig. 10 are
correctly modified in Fig. 11, due to the update of
belief vectors as described in Section 5.

Fig. 12 shows the experimental results. The
recognition rate R was simply defined as

R= (#correctly recognized notes) (13)

" (#toutput notes in total)

Here the ‘template-filtering-off condition
means that the number of taps in the template
filtering was chosen to be 1. Therefore turning all
the elements off is equivalent to the conventional
matched filtering.

It is clear that both of the adaptive template
matching (PT and TF) and the musical context
integration (IT, TS and RC) improves the source

identification accuracy. Specifically, when all the
factors discussed in Section 4 were introduced
(case 11), the number of misidentification is re-
duced to less than half compared with the case
where these three factors were not introduced (case
4). When the timbre similarity factor was solely
introduced (case 5), the recognition accuracy
rather deteriorated (in comparison with case 4).
This is because the topology of the music stream
networks did not correctly correspond to the mu-
sical part.

In this experiment, the musical role consistency
(P;) appeared to be the most effective factor. This
is because the four pieces used in this experiment
(Table 1), which were arranged in a traditional
ensemble style, conform to the role consistency
(that is, the instrument for the principal melodies
or bass-lines does not change throughout the
music).

Recognition rate { %]

100
% g7.5_88.2_88.3 88.5
80
70
60
50
T — @ — &6 &6 & & 0 & 0 o
F - - @ & & @ & &6 0 0 O
m — — — — — @ &® — — 0 ¢
$ — - — - @ - & — & - @
RC — — — — — — — @0 ® 0o ¢
Case 1 2 3 4 5 6 7 8 9 10 1

Improvement
by adaptive
template matching

Improvement
by musical context integration

Equivalent to the conventional matched-filter

PT : Phase tracking

TF : Template filtering

IT : Musical interval transitions (P1)
TS : Timbre similarity (P2)

RC : Musical role consistency (P3)

Fig. 12. The results of evaluation tests.
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Table 1

Music used in the evaluation experiments

Title Instruments  #Notes
(Part order)

Annie Laurie * Fl, Vn, Pf 234

Lorelei ® Fl, Vn, Pf 297

Dreaming of home and mother ¢ Vn, Fl, Pf 304

Auld lang syne # Vn, Fl, Pf 242

Total 1077

Vn: Violin, Fl: Flute, Pf: Piano

Music by:

2 Scotland air; ® Friedrich Silcher; ¢ J.P. Ordway.

Table 2

Values of parameters chosen in the experiments
W]ZOI W2=11 W3=10
=23 a=038 b=01
c=045

7. Conclusions

We have presented a new processing method of
sound source identification for ensemble music.
The method consists of two stages, adaptive tem-
plate matching and musical context integration.
Evaluation tests using recordings of real ensemble
performances clearly showed that both of these
techniques are effective for improving identifica-
tion accuracy. Specifically, it was shown that the
integration of musical context improves the pre-
cision of sound source identification from 67.8% to
88.5% on average.

However, the accuracy is not yet sufficient for
the useful applications such as the automatic
transcription systems and further improvement is
needed. Here we have discussed the musical con-
text in terms of a single-pitched melody; however,
the chord will be also an important musical con-
text factor. Thus an extension of the music stream
network method to include chord transitions will
be considered in future work. We are also planning
to evaluate the system using musical performances
that have further varieties; for example, perfor-
mances that include musical instruments different
to those reported here, and also performances with
more than three parts.
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