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Abstract. In this paper, we discuss an appearance-matching
approach to the difficult problem of interpreting color scenes
~ containing occluded objects. We have explored the use of an
iterative, coarse-to-fine sum-squared-error method that uses
information from hypothesized occlusion events to perform
run-time modification of scene-to-template similarity mea-
sures. These adjustments are performed by using a binary
mask to adaptively exclude regions of the template image
from the squared-error computation. At each iteration higher
resolution scene data as well as information derived from
the occluding interactions between multiple object hypothe-
ses are used to adjust these masks. We present results which
demonstrate that such a technique is reasonably robust over
a large database of color test scenes containing objects at
a variety of scales, and tolerates minor 3D object rotations
and global illumination variations.
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1 Introduction

This paper addresses the difficult problem of scene inter-
pretation, (i.e., the identification and location of objects)
in the presence of strong occlusions. There are essentially
two broad approaches to this problem: geometry-based and
appearance-based. In general, geometric approaches attempt
to match a 3D object model to a set of geometric features
extracted from the scene. Since the matching relies on local
features such as edges and corners, geometric approaches
tend to be tolerant of occlusions. Examples include Ansari
and Delp (1990), Han and Jang (1990), Chaudhury et al.
(1990), Ray and Majumder (1991), and Salari and Balaji
(1991). Unfortunately, the applicability of the geometric ap-
proach tends to be limited to very simplistic objects com-
prised of geometric primitives that are easy to both model
and extract.
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In contrast, appearance-based approaches model objects
purely in terms of their 2D appearance in images, and the
scene-to-model matching process is performed directly in the
image domain rather than in the domain of geometric fea-
tures. Consequently, the performance of appearance-based
approaches is essentially unaffected by object complexity.
For example, human faces are quite complex geometrically,
and so it comes as no surprise that, when Brunelli and Poggio
(1993) directly compared the local feature approach against
the appearance-matching approach, they found that the lat-
ter was significantly more robust. Additional demonstrations
of robust appearance-matching of complex objects include
Turk and Pentland (1991), Wiles and Forshaw (1993), Liu
and Caelli (1988), and Murase and Nayar (1995a).

However, the disadvantage of the appearance-matching
approach is that object appearance is a global feature and
is therefore very sensitive to occlusions. Consequently, to
interpret scenes containing complex occluded objects, one
could consider extending a geometry-based approach to deal
with complexity, or extending an appearance-based approach
to deal with occlusions; we have chosen to investigate the
latter course.

Examples of similar approaches to the problem include
the local appearance-matching work of Ohba and Ikeuchi
(1996), in which small scene windows are correlated with
small template windows, and the “expansion-matching”
method of Ben-arie and Rao (1993, 1994), in which the
scene image is expanded using a set of basis functions that
closely resemble the template image.

In contrast, this paper investigates the possibility of tak-
ing advantage of the global occluding interactions between
multiple scene objects to adaptively improve a similarity
measure based on sum-squared error (SSE) by “masking
out” suspected occluded regions in the scene. The paper
is organized as follows. Section 2 describes the problem of
scene interpretation in the presence of occlusions. Section 3
outlines our approach and introduces its core concept: the
adaptive mask. Section 4 demonstrates the approach on two
example scenes and presents preliminary experimental re-
sults, followed by a discussion in Sect. 5.



2 Problem description

Figure 1a shows an example of the class of scenes that we are
interested in interpreting. The scene is assumed to contain L
model objects set against an arbitrarily complex background.
The L objects may or may not occlude each other. Given
such an input scene, the goal is to estimate the location,
scale, and relative depth order of each object. Figure 1b
shows the reference templates (acquired off-line) associated
with each of the L=6 model objects in a particular database.

2.1 Appearance-based image spotting

The occluding interactions between the L objects is why the
interpretation of scenes such as Fig. 1a is so difficult. In fact,
recent appearance-matching techniques, based on global ob-
ject appearance, have had great success when dealing with
non-occluded objects. In the absence of occlusions, an ob-
ject of arbitrary complexity may be spotted by scanning the
scene with a reference template and computing the scene-
to-template SSE at each image location.

Let the N-dimensional vector v represent the ordered
pixel values (normalized such that ||v|[;=1) of a particular
model object obtained from a reference template, where NV is
the number of model object pixels (background pixels' that
do not correspond to the actual model object are not included
in v.) Likewise, let the N-vector u(i, j) represent the values
of a corresponding ordered set of scene pixels, where (z, j)
denotes a particular column and row displacement (i.e., a
location) in the scene image. Then the similarity of vectors
v and u(%, j) will provide evidence regarding whether or not
an instance of the model object exists in the scene at location
(i, 7). This similarity can be measured by the SSE E2@, 7):

N
E2G,5) = (uk — uk(i, ), 0!
k=1
where u(7, 7) and vy, represent the kth pixel values in u(z, j)
and v, respectively. The value r(nu)l E*(i, j) can be compared
.7

with a threshold? to decide the presence or absence of the

! This implies the existence of some simple (perhaps even manual)
thresholding operation to label the template pixels as either “figure” or
“background”.

2 Threshold values could be obtained from an analytical noise model or
purely from experiments.
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Fig. 1a, b. Typical scene and objects of
interest. a Scene with occlusions and
cluttered background. b Object tem-
plates: stapler2, cat, staplerl,
glue box, juice, and stapler3

model in the scene, and if present, then a reasonable estimate
for the location of the object in the scene would be:

(i, j7) = arg I(nlr)l E%@i,§) . )
i.j

Indeed, if one were to generate an SSE map by plotting
E?(@, §) for each location (4, §) in the scene, one would ex-
pect to see a global minimum at the actual location of the
model object (assuming it is present.) Since we are dealing
with color images, it should be noted that the individual pixel
differences in Eq. 1 are actually summed squared differences
across the three RGB color channels:

vk — (i, §) = Joft — uf@, PP+ o —ug G, D
+Hop —ug G D7 3)

Examples of this basic approach include Anisimov and
Gorsky (1993) and Murase and Nayar (1995b).

2.2 Dealing with occlusion

This approach works very well at spotting complex non-
occluded objects in cluttered scenes, and is generally tol-
erant to mild occlusions (covering perhaps 5-10% of the
object.) However, as the degree of occlusion increases, the
metric E(i, j) quickly ceases to be a reliable indicator of
object presence because a large fraction of the scene pixels
(in the occluded regions) will no longer have any statisti-
cal correlation with the template pixels. For example, let y
be an N-dimensional binary vector (an occlusion indicator
function such that

1 if scene pixel ug(4,7) is not occluded

= “4)
vk 0 if scene pixel ug (i, 7) is occluded

for k=1,..., N. Furthermore, let the non-occluded object

pixels in the scene be indexed by the set S={kly,=1,k=

1,...,N}. Then we can rewrite Eq. 1 as:

Ei, )= Y (k= urli, Y + > (e =)’ (5)
keS k¢S

where 77 denotes a random variable corresponding to the (un-
known) distribution of scene pixel values across the entire
population of possible scenes. So, in general,  will have
no statistical correlation whatsoever with the corresponding
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model pixel value v; (because this kth scene pixel is oc-
cluded.) In other words, if E2(i, 7) is the output of our “de-
tector”, then the first term in Eq. 5 can be thought of as the
“signal”, and the second term as the “noise”. Since (v —77)2
will tend to be much greater than (v, — ux(i*, 5*))?, it does
not take very much occlusion to cause a dramatic degrada-
tion in the performance of such a “detector”.

As occluded regions inject significant amounts of noise
into the £2(i, j) computations, we will continue the analogy
and attempt to “filter out” this noise. If we somehow had
prior knowledge regarding the nature of the occluded region,
we could attempt to “mask out” the regions that are known
(or hypothesized) to be occluded, in order to compute SSE
over only the non-occluded regions of the scene. By ignor-
ing the occluded pixels, the signal-to-noise ratio associated
with this modified SSE similarity measure can hopefully be
improved enough to restore it as a reliable detector of object
presence. ,

So let us define another N-dimensional binary vector z
as an occlusion mask, such that

1 if scene pixel ug(i,5)
is included during SSE computation, ©
Zp =
0 if scene pixel ur(z, j)
is ignored during SSE computation.

Then in this case, the SSE computation in Eq. 1 will become:

N
EXi, )= ae(op—urli, )= (v —wli, ), (7)
k=1

keT
where T={k|zr.=1;k=1,..., N} is the set of non-masked

pixels (i.e., the set of object pixels that are believed to be
non-occluded and therefore included in the SSE computa-
tion.) If perfect a priori knowledge of the actual occlusion
situation were somehow available, we could simply assign
z=y (and hence T=S) and eliminate all noise (i.e., occluded
pixels) while keeping the full signal (i.e., the non-occluded
pixels.) Unfortunately, such a priori knowledge of the scene
occluded regions is néver available.

3 The adaptive mask concept

Since we have no a priori information regarding the nature
of the occluded regions, one course of action would be to
generate a set M= {zp|h=1,..., M} of M initial occlusion
hypotheses (i.e., “guesses”.) A search of the scene could then
be performed using these M occlusion masks, each of which
will provide a different measure E3 (i, j) of SSE:

ERGi.j) =Y (o — ug(i, ) ®)
keTy,
for h=1,..., M. When we apply these M different simi-
larity measures E%(z 7) over the scene, we will obtain M
different SSE maps. The “best” occlusion mask zy« (corre-
sponding to SSE measure Eﬁ(i,j)) will be the one which
masks out the most “noise” (occluded pixels) and retains
the most “signal” (non-occluded pixels.) Without providing
a rigorous statistical analysis, it can be stated that a reason-

able expectation is that the minimum-error triplet (i*, j*; h*),
defined by

(", 7% h*) = arg min E; (i, 7) 9)
(4,5:h)

will provide us with the most likely position (¢*, 7*) of the
model object, as well as the most likely occlusion situation
Zp~ (at least from among the set of admissible occlusion
masks z;, € M.)

3.1 Selecting initial masks

Before we can begin to scan the scene with this set M of
hypothetical occlusion masks, we must address the issue of
how to choose this set, as well as the number of masks
M that will be sufficient. Note that the space of possible
occlusion masks is huge. Our six model objects each contain
on the order of 5000 pixels; this implies the existence of
approximately 2°0% possible occlusion situations for each
model object! From this huge space, we may select only a
few masks with which to test the scene.

Recall that the purpose of applying an occlusion mask
Zj, is to obtain a good approximation to the actual occluded
regions y of the scene object. Furthermore, the fact that we
are taking a minimum in Eq. 9 implies that our goal should
be to select a set of masks M that minimize the probability
that none of the M masks is a good approximation to y. If
at least one selected mask is a good approximation to y, then
it will yield a good object detector E%L(i,j). A mask z;, can
be considered a “good approximation” to y if the probability
is high that, for any given pixel, zj =y, (ie., zp % and yi
are both 1 or both 0.) In more formal terms, we seek a set
of occlusion masks M={z;|h=1,..., M} such that

Pr{(zn-k # yp) 2 €} < 0 h™=argminPr{zn i # yx}  (10)

and both § and ¢ are arbitrarily small constants.

To obtain L sets of occlusion masks M; (one set for each
of the L model objects), we took a frequency interpretation
of the probabilities in Eq. 10 and generated 1000 random,
simulated, occluded scenes using the L =6 model objects in
our experimental database. For each model object, this scene
data yielded 1000 points in an N-dimensional mask space,
denoted by y;,7i=1,...,1000. Selecting a particular mask
Zp, can conceptually be thought of as placing a hypersphere
of radius ¢ in this mask space, centered at z;. The random
occlusion patterns y; that happen to fall within this hyper-
sphere will be well approximated by z;. One can continue
to select masks (and place hyperspheres) until the fraction
of the 1000 random mask points left “uncovered” by any
of the M hyperspheres is less than 4.

In our implementation, we select the set of (fixed) M
masks that minimize ¢ for a fixed value of €. We use a slight
variation of the parametric clustering algorithm described in
Fukunaga (1990) to select the M occlusion masks in a near-
optimal manner. Figure 2 shows the resulting set M°®* of 20
initial occlusion masks for the cat object, as generated by
the clustering algorithm. Note that the first mask corresponds
to a situation in which the cat is fully visible.

Of course these sets of masks cannot be expected to con-
tain “perfect matches” with the actual occluded regions y.

3 A random mask point y; is “covered” by the Ath mask’s hypershere if
the Hamming distance |ly; — zx||1 < e.
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Fig. 2. Set M2t of 20 initial occlusion masks statistically generated for the cat object

However, since the mask sets are constructed in accordance
with the constraint in Eq. 10, we will at least have proba-
bilistic guarantees on their likelihood of approximating the
actual occlusion situation in the scene.

3.2 Coarse-to-fine search

he major difficulty with the approach outlined above is
that performing a complete search of the scene for each of
the M hypothesized occlusions masks would impose a very
large computational burden. Therefore, matters of computa-
tional efficiency force one to perform both the search and
the actual correlations at a greatly reduced scene resolution.
As Burt (1988) noted, the computational cost of template
search increases proportional to the fourth power of image
resolution. So, there is a great incentive to reduce the image
resolution at which the search is conducted?: this computa-
tional speed-up technique can be found in several previous
works, such as Rosenfeld and Vanderbrug (1977), Sista et
al. (1995), and Anisimov and Gorsky (1993).

Figure 3 shows the scene of Fig. la at three successively
coarser resolutions. Similarly, Fig. 4a and b shows the tem-
plate and an example mask associated with the cat object at
the four resolutions. Each resolution level is generated via
Gaussian filtering followed by downsampling (by a factor
of two.) In our experiments, the SSE-based searches were
mitially conducted at the coarsest of these four resolution

~.evels (i.e., on a 40 x 30 array of pixels, rather than on the

original 320 x 240 pixel image.)

Although a coarse resolution search is much faster, the
trade-off is that it also provides much less image informa-
tion (fewer pixels) for use in drawing conclusions about ob-
ject presence, location, scale, etc., and thus significantly in-
creases the probability of mistaken identification. Therefore,
we must verify the hypothesized locations of the model ob-
jects using the much more information-rich high-resolution
image data.

So the situation is as follows: a total of LM coarse-
resolution SSE-based searches are conducted: one search for
each of the L model objects, using each of the M hypothet-
ical occlusion masks associated with that object. The result
is zero or more promising hypotheses (i*, 7*; h*) for each
of the L model objects. In our experiments, a “promising”

4 Note that there exist a number of other speed-up methods for template
matching, such as invoking probabilistic image models in order to perform
the pixel-to-pixel correlation operations in a more intelligent sequence (see
Margalit and Rosenteld 1990). However, resolution reduction appears to be
the most straightforward and powerful of these methods.

hypothesis was defined as a point (i’, j') in the image where
the SSE E} (i, j) for one of the occlusion masks zy, is both a
local minimum and below an empirically established thresh-
old.

This set of hypotheses must then be verified or rejected
using higher resolution image data. In addition, due to the
coarseness of the search, these location hypotheses contain
a great deal of spatial uncertainty. Consider that each pixel
in the 40 x 30 searched image maps to a 8 X 8 = 64-pixel
neighborhood in the original 320 x 240 image. Thus, if we
were to simply jump immediately to the full-resolution im-
age in order to verify a hypothesis, it is quite likely that
the coarse-level hypothesized object locations will be sig-
nificantly perturbed from their true locations. Such spatial
mismatches of even a few pixels are known to substantially
degrade the reliability of SSE measurements (see, for exam-
ple, Ohba and Ikeuchi 1996).

So, in effect, we must perform a fine-resolution search by
spatially “perturbing” each coarse-level hypothesis (i*,5*;
h*) within its range of resolution-induced uncertainty (i*+
81, j*+674; h*), and compute fine-resolution SSE at each such
perturbed location. Such a search can be much more ef-
ficiently performed by increasing the image resolution in
stages® from coarse to fine, through each of the resolution
levels shown in Figs. 3 and 4.

We perform such a coarse-to-fine, staged search for the
purposes of both verifying and reducing the spatial uncer-
tainty of the initial location hypotheses associated with each
of the L model objects. In addition, we can achieve toler-
ance to scale variations by perturbing the hypothesized scale
of each object at each stage as well, by computing multiple
SSE values, using model templates v” (and occlusion masks
z;) scaled by different magnification constants® . A similar
method was described by Anisimiov and Gorsky (1993).

3.3 Heuristic objective function

As discussed in the previous sections, the SSE metric E,zl(i, 7)
serves as our “object detector”, and returns zero or more lo-
cal minima (¢*, 5*; h*) for each model object; these minima
are ranked by SSE value and become candidate hypotheses.
However, it was noticed that experimental results could be

3 At each stage, a small-area, medium-resolution perturbed search is
performed over a small region (say 2 X 2 low-resolution pixels), rather than
a high-resolution search over a large (say, 8 x 8 high-resolution pixels)
region.

6 In our experiments, vy took values of 0.7, 0.8, 0.9, 1.0 (no scaling),
1.1, 1.2, and 1.3.
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improved somewhat if the hypothesis ranking was based not
only on the raw, bottom-up SSE values, but also on some
simple top-down heuristics. Therefore, when deciding which
hypotheses to verify, we form our rankings based on an ob-
Jective function ¢ (i, j, h), which combines the raw E,ZL(i7 )
output with a masking-area term P(zp) term and a scaling
term Q(vn):

7 (.5, =E2(i, 5. h) + aP(zp) + BQ() (1)

where o and 3> 0 are weighting coefficients which allow
the influence of the masking-area and scaling terms to be
tuned for a specific set of objects. Hypotheses (%, j*;h")
with lower values of # (i, j, h) are more favorable.

The purpose of the masking term P(z)=(N—||z|[1)/N
is to increase the cost penalty on an adaptive occlusion mask
), as the fraction of “masked- out” pixels increases. The
purpose is to impose a penalty on hypotheses that ignore
large numbers of scene pixels (because they are presumably
occluded), and hence force such hypotheses to compensate
for their smaller and less reliable set of support pixels with
smaller error Efl(i, 7) over their non-masked regions.

The scaling term Q(7) = (1 —)/~ imposes a.negative

cost for magnified hypotheses, a positive cost for dilated
hypotheses, and zero cost for non-scaled hypotheses (recall
from Sect. 3.2 that ~ refers to the factor of magnification
used for scale perturbation during the coarse-to-fine search.)
The justification is that the staged search has a tendency
to converge to object hypotheses that are otherwise correct
but are scaled slightly smaller than the actual object in the
scene (usually less than 5%.) This is because the appear-
ance variations within an object are generally less drastic
than the appearance variations between the object and the
background. Consequently, a scaled model template that is
slightly too big (and therefore extends beyond the bound-
aries of the scene object into the background) will tend to
have larger SSE than a template that is slightly too small
(but which at least fits within the boundaries of the scene
object.) The scaling term @Q(y) counteracts this tendency.

3.4 Run-time modification of masks

At each resolution of the coarse-to-fine search, the current
hypothesized locations and scales zj°°° are available for

each object. We can improve the quality of the similarity

Fig. 3. Scene of Fig. la at % %, and %
resolution

Fig. 4a, b. Multiple resolution levels. a
The cat model template v2°. b The

mask z{3"

measure F7. (i, j) by replacing each minimum SSE mask z;,-
with a new mask in which all pixels are non-occluded, except
for those pixels that would be occluded assuming that the
current hypothesized object locations and scales are indee._
correct.

Due to this run-time modification procedure, as the res-
olution level increases and the hypothesized object locations
and scales become more precise, the occluding interactions
between the objects will allow the occlusions masks to be
continuously improved, becoming better and better approx-
imations to the actual occluded regions y7“ice, y°at etc.
These improved masks are then used in the SSE computa-
tions at the next-higher resolution level, and so on. The final
goal is a globally consistent scene interpretation, verified at
the finest resolution level, in which each object’s adaptive
mask z°°3°°% has converged to a very good approximation
of that object’s actual occluded regions y°*3°*,

It should be noted that, because the LA SSE-based
searches are performed at very low image resolution, there
will sometimes be cases in which one or more model objects
will be assigned ‘‘incorrect” coarse-resolution occlusion hy-
potheses (i*.5*; h*).(i.e., when zzlfjeCt =arg m_ig)l El(i,7) is

%,7:h

not, in fact, a good approximation to y°3°°*.) Therefors

if the computed SSE of a hypothesis exceeds an empiricar—
threshold at a certain resolution level, the hypothesis is re-
jected and the coarse-to-fine verification search is repeated
using the next most promising coarse-level hypothesis gen-
erated during the initial scene search. This procedure imple-
ments a simple form of backtracking.

4 Experimental results

In this section, we follow two typical scenes through the
interpretation process, in order to better illustrate the algo-
rithm. The set of L = 6 model objects used in these ex-
amples are those of Fig. 1b. To evaluate the robustness of
the adaptive-mask approach, we also performed two sets of
experiments. In both experiments, the object database dis-
played in Fig. 1b was used’, and both the model templates

7 The two illustrative examples were actually generated using a set of
13 initial occlusion masks for each model object; these 13-mask sets were
simplified approximations to the full 20-mask sets which were used in
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Fig. 6. Coarse-to-fine evolution of ob-
ject hypotheses
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and test scenes were RGB color images (displayed here in
grey-scale format.)

4.1 Hlustrative example 1

In this example, the scene of Fig. la was used. The first
step is to recursively downsample the scene three times,
yielding the four scenes at different resolutions, as shown in
Fig. 3, in addition to the original scene®. Next, the coarse
resolution search is performed. For each of the L=6 model
objects and M initial occlusion masks, an SSE-based scan of
the scene was performed. Figure 5 shows examples of the
scene-to-model SSE varying across the image for various
occlusion masks z,. For purposes of clarity, these plots are
inverted such that peaks correspond to regions of low SSE,
and therefore high similarity.

Figure 5a shows F3(i,j) using the mask z{*® corre-
sponding to the first mask in Fig. 2 with no occlusion. The
minimum SSE occurs at the correct location of the cat in
the lower right corner of the image (see Fig. 1a.) In Fig. 5b,
the mask zS*® (corresponding to the sixth mask in Fig. 2
with the left half of the cat occluded) was used to com-
pute E2(i, j), and again the minimum occurred in the lower
right corner of the image, except that the peak is sharper
and higher than in Fig. Sa. This is to be expected, since
the left side of the cat is, in fact, occluded in the scene,
so zZ®* should yield a better cat detector than z5*°. In
Fig. 5c, the mask z5° (corresponding to the seventh mask
in Fig. 2 with the top half occluded) was used, and we see
that this grossly incorrect occlusion hypothesis results in an
incorrect point of minimum SSE. Finally, Fig. 5d shows the
sharp similarity peak that results from using the thirteenth

guessed mask z;; % associated with the juice object (not
shown.) This guess corresponds to the bottom right corner
of the Juice being occluded (which happens to be the case
for this scene.) Consequently, the juice is correctly lo-
cated near the center of the scene. These plots show that,
when a particular occlusion mask z; is ‘‘correct” (i.e., it
closely approximates the actual occlusion y), then the re-
sulting scene-to-model SSE becomes a reliable indicator of
object location. Note, however, that incorrect local minima
may still exist, which may be incorrectly interpreted as likely
object locations, hence the need for the verification stage and
the possibility of backtracking.

Following this series of LM coarse searches, the itera-
tive verification stage is performed. For each of the L model
objects, the minimizing location hypothesis (", j*; h")=
arg (m_ir}l)?f(i, j,h) is selected. These L object hypotheses

ik

provide the starting point for the coarse-to-fine staged search
discussed in Sect. 3.2. Figure 6 shows a graphical represen-
tation of these object hypotheses (in terms of their adaptive
masks) as the search progresses to full resolution.

Note that in this scene five of the six initial coarse-
level object hypotheses were approximately correct. How-
ever, the location of the stapler3 object (displayed as

the two robustness experiments, and which were statistically generated as
discussed in Sect. 3.1.

8 The coarse-resolution versions of the L model templates (e.g., Fig. 4a)
and their associated sets M; of M initial occlusion masks each (e.g., Fig. 4b)
are generated off-line.

white in Fig. 6) was grossly in error. Consequently, at the
first iteration of the verification stage, the objective function
7 (i,7,h) of the stapler3 object hypothesis exceeded a
threshold. The search backtracked, and the incorrect hypoth-
esis was replaced with the second-best (and correct) candi-
date. As the verification stage proceeded through finer res-
olution levels, the residual ambiguities in object location
and scale were resolved during the perturbation procedure.
At termination, the algorithm had converged to the correct
hypothesis. Figure 7a shows the final result of the scene
interpration by displaying the adaptive masks in their final
configuration. In addition, Fig. 8 focuses on the evolving
configuration of the cat’s adaptive mask through the itera-
tions.

4.2 Hlustrative example 2

For the second example, Fig. 7b shows the final interpreta-
tion result super-imposed over the original scene. In this ex-
ample, the verification stage performed a significant amoune_
of backtracking prior to achieving a final convergence to the
correct interpretation (unlike the first example, in which only
a single backtracking event occurred on the first iteration.)

Figure 9 shows a schematic of the backtracking sequence
for this example, in which the adaptive mask of the cat is
superimposed over the scene at each iteration. A total of ten
iterations were required before convergence was achieved.

Following the coarse search, the initial hypothesized lo-
cations of the stapler2, glue box, and juice ob-
jects were correct (within the spatial ambiguities associated
with the initial coarse resolution.) However, both the first-
and second-best cat hypotheses, in terms of minimized
¢ (i,j.h), were incorrect: the cat was initially hypothe-
sized to be present in the upper right corner of the scene.
This incorrect hypothesis survived until the finest resolution
level before being rejected by the error threshold criterion.
The search backtracked to the coarsest level, and the next
(again incorrect) cat hypothesis survived to the second-
finest resolution level before being rejected. Finally, the third
(correct) cat hypothesis is tried, and results in a correc
convergence. This is a good example of how the absence
of medium and high spatial frequencies at the coarsest level
can lead to mistakes, and hence the need for the verification
stage.

4.3 Robustness experiment |

The purpose of the first robustness experiment was to eval-
uate the performance of the algorithm over a large set of
scenes. An image database containing 50 different occluded
scenes was generated by arranging the model objects in
random occluded configurations, and against cluttered back-
grounds. The average number of model objects present per
scene was 3.3.

The scene interpretation algorithm was performed on
each of the 50 test scenes. The results are summarized in
Table 1. A total of 164 instances of the model objects ap-
peared in the 50 scenes; the algorithm correctly identified
and located 154 of them, or 94%. In the case of 3 object in-
stances (2%), the algorithm converged to an incorrect object



hypothesis. In an additional 7 instances (4%), the algorithm
rejected all object hypotheses, despite the fact that the object
was present in the scene.

In an actual application, the error thresholds would be
highly optimized for the particular database of objects. How-
ever, these results were obtained with very little threshold
optimization. We suspect that, in a real application, perfor-

ance could be improved further by conducting a thorough
“—study of the optimal threshold settings for this particular
object database.

4.4 Robustness experiment 2

In the second experiment, the robustness of the algorithm
to variations in scale, 3D object rotation, and global scene
illumination was explicitly investigated.

4.4.1 Variations in scale

In the first part of the experiment, a simple occluded scene
was constructed and tested 21 times. For each scene, the ob-
jects were moved further from the camera in order to inde-
pendently investigate algorithm performance subject to scale
changes only. Figures 10a and b show the two extremes of
scale. In each of the 21 test scenes, the algorithm determined
the presence and correct location and scale of the cat and
glue box objects.

Fig. 7a,b. Scene interpretation follow-
ing final convergence, with the non-
occluded portions of the object hy-
potheses outlined in white, and the oc-
cluded portions outlined in black. a Ex-
ample 1. b Example 2

Fig. 8. History of the cat hypothesis,
with the black and white boundaries in-
dicating the regions of the cat hypoth-
esized to be occluded and not-occluded.
respectively

4.4.2 Variations in 3D rotation

In the second portion of the experiment, we investigated
the robustness of the adaptive-mask approach to variations
in viewing direction via 3D object rotations. We were in-
terested in how much 3D rotation could be present before
scene interpretation failures occurred.

The same simple configuration from the first portion of
the experiment was used to construct ten different scenes in
which the 3D rotation of the cat varied from —25° to +20°
(with respect to the cat’s template image.) Figure 10c and d
shows the two extremes of this range of rotation. As the cat
was rotated through these angles, the algorithm performed
successfully seven times, and failed three times, with the
failures occuring at angles of —25°, —15°, and +20°.

4.4.3 Variations 1n illumination

In the third portion of the experiment, the tolerance of the
algorithm to changes in scene illumination was investigated.
Fifteen test scenes were constructed, in which scene illumi-
nation was varied over several degrees of freedom by turning
on and off various overhead lights, and adjusting the position
and intensity of various spotlights. Figure 10e and f shows
two such scenes.

The adaptive-mask approach was applied to each of the
15 scenes. In 5 of the scenes, recognition failed, as the algo-
rithm reported that both the cat and the glue box objects
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were absent from the scene. In the other 10 scenes, includ-
ing both scenes presented in Fig. 10e and f, recognition was
successful.

It is difficult to show quantitative results from this ex-
periment. All that can be reported is that the algorithm per-
formed reasonably well in the presence of moderate illumi-
nation changes, such as those shown in Fig. 10e and f, but
failed when the illumination changes became more extreme.

5 Discussion

This paper presents an investigation into the extension of
the appearance-matching approach to deal with occluded ob-
jects. The core of this extension is the use of an adaptive
mask that takes advantage of inter-object occlusion interac-
tions in order to eliminate occluded regions from the scene-

Fig. 9. [lustrative history of cat-backtracking—
in Example 2

to-template SSE computations. Without a priori knowledge
of the scene, an initial set of possible occlusion masks must
be generated, based on the statistics of the model object ge-
ometries. The resulting coarse-resolution squared-error com-
putations yield object location and scale hypotheses. These
hypotheses are then verified using a coarse-to-fine staged
search.

During this search, the masks are adaptively improved as
new information (from higher spatial frequencies and from
global occlusion interactions) is taken into account. In addi-
tion, a mask may undergo a drastic adaption in the event that
an object hypothesis is rejected and the search backtracks.

Most of the strengths of the adaptive-mask approach
stem directly from its reliance on scene-to-template squared
error. The most compelling strength, shared by all appear-
ance-matching approaches, is the lack of dependence upon
object complexity in terms of either shape or surface pat-
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Num. Instances Percentages

Object Name  Total ~ Success Mislocated  Missing  Success  Mislocated Missing
glue box 28 28 0 0 100% 0% 0%
staplerl 17 15 1 1 88% 6% 6%
cat 40 34 2 4 85% 5% 10%
juice 43 43 0 0 100% 0% 0%
stapler3 15 14 0 1 93% 0% 7%
stapler? 21 20 0 1 95% 0% 5%
TOTAL 164 154 3 7 94% 2% 4%

terns. As a result, rigid objects of arbitrary complexity can
be handled by this technique, which is a necessary condi-
tion for most systems designed to operate outside of a vision
laboratory.

The appearance-matching core of this approach also
yields a good degree of robustness to image noise and to
reasonable amounts of illumination variation, 3D object ro-

tion, and scale variations (e.g., corruption of a small set
of scene pixels will have only a small effect on system per-
formance, unlike the situation with many geometric-based
methods.) Furthermore, the use of 2D model templates for
object representation allows the use of a “teach-by-showing”
methodology to build object model databases.

In this paper, the image-spotting problem was restricted
to a single canonical viewing direction for each model ob-
Ject in order to study the occlusion issue independently. The
next logical step will be to investigate the extension of the
adaptive-mask concept to the previous image-spotting work
of Murase and Nayar (1995b), in which objects may be rec-
ognized over a range of 3D rotations.

We are also interested in improving upon the SSE (L)
similarity metric, which is by no means optimal for real
images (although it is the easiest to compute.) Recently pro-
posed alternatives to L, correlation appear to improve per-
formance for some classes of image (see Boninsegna and
Rossi 1994 and Bruneili and Messelodi 1995.) We would
like to investigate these and other similarity metrics, such
as color histograms, texture measurements, higher order sta-

Fig. 10a—f. Test scenes. a and b Ex-
tremes of scale variation. ¢ and d Ex-
tremes of 3D rotation variation. e and
f Extremes of illumination variation,
for which successful scene interpreta-
tion was achieved

tistical properties, etc., and combinations thereof. By doing
s0, we hope to extend the domain of appearance-matching
techniques into the realm of non-rigid objects.
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