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Partial Eigenvalue Decomposition of Large
Images Using Spatial Temporal Adaptive Method

Hiroshi Murase and Michael Lindenbaum

Abstract— Finding eigenvectors of a sequence of real images
has usually been considered to require too much computation
to be practical. Our spatial temporal adaptive (STA) method
reduces the computational complexity of the approximate par-
tial eigenvalue decomposition based on image encoding. Spatial
temporal encoding is used to reduce storage and computation,
and then, singular value decompesition (SVD) is applied. After
the adaptive discrete cosine transform (DCT) encoding, blocks
that are similar in consecutive images are consolidated. The
computational economy of our method was verified by tests on
different large sets of images. The results show that this method is
6 to 10 times faster than the traditional SVD method for several
kinds of real images. The economy of this algorithm increases
with increasing correlation within the image and with increasing
correlation between consecutive images within a set. This algo-
rithm is useful for pattern recognition using eigenvectors, which
is a research field that has been active recently.

I. INTRODUCTION

IGENVECTOR analysis is important in many fields in-

cluding signal processing, image analysis [1], [13], and
pattern matching [2]. The eigenvectors form an orthogonal
basis for the representation of individual images in the image
set. Although a large number of eigenvectors may be required
for very accurate reconstruction of the image, a much smaller
number of eigenvectors is generally sufficient to represent
the image. This is the basis of the image compression or
coding technique known as the Karhunen-Loeve transform.
Eigenvectors are also very attractive for machine vision. In
particular, pattern recognition using image eigenvectors has
been an active research area recently. This idea has been
applied to several recognition problems, including handwritten
character recognition [3], face recognition [4], [5], object
recognition [6], and illumination planning [7].

In practice, however, computing eigenvectors of high-
resolution images of large sample sizes often requires
prohibitive amounts of computation. For example, eigen-
vectors of more than 1000 images, where each image
has more than 16 384 (128 x 128) pixels, are typical in
object recognition [6]. Calculating the eigenvectors of such
a set using a traditional method is not easy on common
workstations.

A wide variety of computational methods are found in the
literature. Some of the methods suitable for very large data sets
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may be considered to be iterative gradient search algorithms
[9], [15]. In addition, there are specialized methods for specific
problems, such as decomposition of matrices having a Toeplitz
structure [10], matrices arising in stochastic systems [8], or
dynamic methods for use with data that arrive sequentially
[11]. A useful approach for finding eigenvalue decomposition
when the dimension of the vectors is larger than the number of
the vectors in the set is singular value decomposition (SVD)
[11], [12]. However, when the sample vectors are large images,
this approach requires a large amount of computation. This
approach is reviewed in the following section. For extremely
large data sets, such as those arising in image recognition
applications, the computation as a function of data size can
still be unacceptable.

In this paper, we present a method called the spatial tem-
poral adaptive (STA) method for computing the approxi-
mate partial eigenvalue decomposition of large image sets.
Computation and storage requirements are reduced by the
spatial temporal adaptive image encoding, and then singular
value decomposition is applied. The coding algorithm is
based on the traditional adaptive discrete cosine transform
(DCT) encoding [16] followed by consolidation of the DCT
coefficients of blocks that are similar in consecutive images.
The STA algorithm provides resuits that approximate the ideal
results in a predictable and controllable way. The economy
of our algorithm increases with increasing correlation within
the image and with increasing correlation between consecutive
images within a set.

First, we review previous methods applicable to the present
task. Then, we present the STA algorithm followed by a
short analysis. Experimental results for various sets of images
are then given, and the advantages of the new method are
demonstrated.

II. COMPUTING THE PARTIAL EIGENVECTOR EXPANSION

We begin by introducing some terminology and then show
the known methods. We assume the data to be a set of m
vectors z1,...,Z,, representing m images. Each component
Zy,...,Z, of an image z, where n is the number of pixels
in the image, represents the intensity of one pixel. For con-
venience of notation, the images are combined into an n X m
matrix X, with each image «; forming a column of X, that is

X =z ZTm)- 2.1
The position of the image within the set will be referred to

here as a “time” coordinate, even though not all image sets

1057-7149/95804.00 © 1995 IEEE



MURASE AND LINDENBAUM: PARTIAL EIGENVALUE DECOMPOSITION OF LARGE IMAGES USING SPATIAL TEMPORAL ADAPTIVE METHOD 621

are time sequences. If the rank of the matrix XX T is K, then
the K nonzero eigenvalues of XX T, Al,..., Ak, and their
associated eigenvectors ey,...,ex satisfy the fundamental
eigenvalue relationship

)\ie,- =R€i, 1= 1,...,K (22)

where R is the square, symmetric matrix computed from X
and its transpose X

rR=xxT. (2.3)

The K eigenvectors form a basis, and the columns (original
images) may be represented by their projection on these
vectors. This special basis, which is adapted to the data, is
also known as the Karhunen-Loeve or principal component
basis. Often, the image data is approximated by retaining only
the k < K largest eigenvalues [A;] > |Ao| > -+ > || and
their associated eigenvectors ey, ..., ex. This partial set of k&
eigenvectors spans a subspace in which Z;,...,%,, are the
projections of the original vectors z1,...,%,. What makes
this partial basis special is that these projections are the best
approximation of the original vectors with respect to the 12
norm, that is, every other approximation of the m original
vectors as a linear combination of % basis vectors gives an
average {2 error larger than the error approximated by using
the eigenvectors.

A. Conjugate Gradient Method

A practical approach to computing the partial eigenvector
decomposition is to use iterative methods. A relatively efficient
method for finding the largest eigenvalue is to use the conju-
gate gradient method for finding maximal values of a function
with a suitable scalar function [9]. This method overcomes
the convergence problems associated with the original power
method [14]. The function to be maximized is the Raleigh
quotient F'(é) defined as

F(&) = (eTRre)/(eTe). 2.4)
Clearly, when F (&) takes on a maximum value, F'(€) will be
equal to Amay, and & will be colinear with epax. Changing
R to find the next eigenvector involves updating the data by
removing the dimension associated with the first eigenvector
and then recalculating R. Let R, be the updated matrix used
to calculate the sth eigenvector. Then

R, =R

R,=R.y - A_1é,_16l . 2.5)

This algorithm performs well, and the amount of compu-
tation required grows approximately linearly with the number
of elements in R when n is large. However, the number of
elements varies with the square of n; therefore, the initial
computation of R, which requires a dot product between two
m-dimensional vectors for each element, becomes the limiting
step for many practical problems. This problem can be avoided
by a modification [14] that eliminates the need to use R. The
modified algorithm (the Implicit R algorithm) eliminates the
explicit computation of R by using the data matrix X in each

iteration. For many problems, this modification, however, is
not faster. A more detailed explanation can be found in the
recent survey [15] and in Section IV of this paper, which
analyzes the performance of the different algorithms.

B. Singular Value Decomposition Algorithm

Although R is an n x n matrix, the matrix

rR=xTx 2.6)
is m x m and is much smaller in practical problems. The matrix
R has eigenvalues A;,..., Ak and associated eigenvectors
&,...,ex related to those of R by

A= M
e 2.7)

1/2 v~ .
e = i /Xei }izlv K

(3

The relation (2.7) was developed within the framework of
the singular value decomposition theory [11]. We call ¢ a
coeigenvector and note that it is of length m, whereas the
eigenvector e is of length n. When m is much smaller than
n, using the above relations to compute the eigenvectors can
greatly reduce the computational load. The coeigenvectors’
elements are later used as weights for computing the true
eigenvectors as linear combinations of the input images. This
approach of first computing the coeigenvectors and then using
them to compute the eigenvectors is referred to as the singular
value decomposition (SVD) algorithm. This method performs
well for some problems, but the limiting step with many large
data sets is still the computation of R.

As we shall see in the next section, our al~gorithm uses an
efficient representation for computing the R matrix. Then,
it calculates the coeigenvectors and converts them to the
eigenvectors using the SVD algorithm. These sequences are,
for example, often obtained in the visual learning stage in
pattern recognition. Our method is suitable for the calculation
of large image sequences for three reasons. First, we use a
representation that is efficient for natural gray-level images.
(Color is a natural and easy extension.) Second, our represen-
tation adapts itself to the similarity between different images
in the given data set and uses it to improve the computation
efficiency. Finally, the calculation of the R matrix is done not
element by element but by computing contributions to blocks
of elements at each step.

III. SPATIAL TEMPORAL ADAPTIVE (STA) ALGORITHM

Our approach is not to use the given pixel data itself
but rather to use the DCT coefficients. The calculation is
mainly done in the DCT (frequency) domain. The following
equations show that both approaches are the same. Let U be an
orthogonal matrix (UTU = I). Generally, for any orthogonal
transformation U of the data X

Y=UX 3.1
and the eigenequation

re=XTxe (3.2a)



can be rewritten as

ze=xTvTuxe (3.2b)
=yTys. (3.20)

Thus, any orthogonal transformation U that is conveniént
for computing yTy may be applied without changing the
computed €. The DCT is an orthogonal transformation, and it
represents images efficiently. This fact is our motivation.

The images are approximated by the small number of the
DCT coefficients [18]. In other words, we use the approximate
images instead of the accurate images. The first two stages in
the algorithm are thus dedicated to approximating the data
efficiently. In the first stage, every image is divided into
square blocks with 8 pixels on a side, and each block is
represented adaptively by a partial collection of its discrete
cosine transform (DCT) coefficients. We use a variation of the
method of Chen and Smith [16], allocating more coefficients
to blocks that have a high variance. The second step looks
at blocks at the same location in different images and, if
the difference between blocks is small enough, merges them
into spatio-temporal volumes. The third stage uses the spatio-
temporal volumes to calculate the matrix R, but unlike the
traditional methods, it does not calculate every component of
the matrix separately. Instead, it computes contributions to
blocks of components together. These contributions lead to a
faster calculation of the R matrix. The algorithm then uses
the conjugate gradient method to compute the coeigenvectors
and finally calculates the eigenvectors adaptively using the
spatio-temporal volume structure. The main algorithm is as
follows.

STA Algorithm

Preprocessing

1) Divide each image into 8 x 8 pixel blocks, and find its
DCT coefficients and ac energy.

Coefficient Selection

2) Using the first image and an energy histogram, find three
energy thresholds that classify the blocks into four equal
classes.

3) Estimate the variance of the DCT coefficients in each of
these classes, and find the required bit allocation for each
coefficient. If the rate is higher than 1, this coefficient
is selected.

Merging Blocks into Spatio-Temporal Volumes

4) For each of the images starting from the second one,
compare each block with the corresponding block in the
same place in the previous image. If the mean square
difference is less than ¢;, merge these two blocks into a
spatio-temporal volume. Otherwise, start a new spatio-
temporal volume with this block.

Find the R Matrix from the Spatio-Temporal Volume De-

scription

5) For each block location k, evaluate the dot product of
every pair of spatio-temporal volumes related to that
location and add it to the corresponding terms of the
matrix B". Sum all the matrices B" to get the matrix R.

IEEE TRANSACTIONS ON IMAGE PROCESSING. VOL. 4, NO. 5, MAY 1995

Data Eigenvectors
— DCT Inverse DCT | __
X (U) U™ €;
Y 3
Coefficient
selection Eigenvectors for X*X

(DCT representation)

¥

Grouping ;:.,‘ Iye,

Spatio-temporal
s volume structure

Calculation > ?igenvectors Coeigenvector-
T - or yyT = | to-cigenvector
Yy R € | wansformation

Fig. 1. Block diagram for the spatial temporal adaptive (STA) method.

Complete the Eigenvector Calculation

6) Find the coeigenvectors é;,...,e; that maximize the
Raleigh quotient of the matrices R, Rz, ... defined by
(2.5) using the conjugate gradient method.

7) Compute the DCT representation of the eigenvectors

€1,...,e; from the coeigenvectors using the spatio-
temporal volume structure.
8) Transform the derived eigenvectors e;,...,e; in the

DCT domain into the image domain using inverse DCT.

In the rest of this section, we describe the STA algorithm
in detail. A block diagram is given in Fig. 1.

The nonstationarity of visual images implies that represent-
ing them efficiently requires local adaptation. We follow the
classical and frequently used approach of Chen and Smith [16],
who gave an efficient method for coding an image using an
efficient representation of the block DCT coefficients. They
start by dividing an image into blocks and finding the DCT
coefficients of each block. These DCT coefficients are much
less correlated than the gray levels and are thus easier to code
efficiently. The blocks are divided into four classes of equal
size, according to their ac energy. We took this number of
classes (four) from Chen and Smith’s paper [16]. The variances
of the DCT coefficients, which are assumed to be indepen-
dently distributed Gaussian random variables, are estimated for
each class. Optimal mean square error (MSE) representation of
a set of Gaussian independent random variables with known
variance is a problem that has already been solved in rate
distortion theory [17]; therefore, deciding how many bits to
use to represent each coefficient is straightforward. Because
the goal of Chen and Smith’s algorithm is to encode the image
efficiently, it proceeds by optimal Lloyd-Max quantization and
obtains the quantized coefficient as the efficient representation.
Here, we assume that DCT coefficients have a Gaussian
distribution because this rough assumption is sufficient for our
purpose. However, we can easily change this bit allocation step
to a more accurate method for nonGaussian data.

A. Coefficient Selection

Rather than trying to reduce the computational cost by using
less precision of representation, we try only to reduce the
number of floating point calculations. Thus, we select only
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Fig. 2. Number of coefficients retained in each block for the first image of
the “walking” set (the upper image in Fig. 4(a)). The image size is 128 X
128 pixels. This image is represented by 16 x 16 blocks, where each block
size 1s 8 x 8 pixels.

coefficients whose allocated rate is one bit or more, and we
discard the rest. The variance statistics and the selection maps
are derived from only one of the images, which is thus assumed
to be characteristic of the rest. This assumption could be
avoided by calculating average values of all the blocks in
the image set or calculating them from a randomly selected
subset of the blocks.

Suppose that for some particular class out of four classes,
the variances of the coefficients ci,cs,... are 07,03,....
For Gaussian coefficients and a prespecified average block
distortion ¢, the optimal bit allocation can be calculated as

Rt = e e, (%) ]

where 6 is the biggest number that satisfies the relation
[16]-{18]

(3.3a)

e« <> min{o?,6}. (3.3b)

This calculation is applied for four different classes.

The result of this stage is four different selection maps: one
for each of the classes. The number of coefficients retained
depends on the spatial average block distortion &,, which
determines the quality of the approximation. For example, to
achieve an average approximation SNR of 29 dB in the first
image, the number of retained coefficients is reduced from
64 to 24, 21, 13, and 4 in the four corresponding classes.
As an illustration, Fig. 2 gives the number of coefficients
retained in 8 x 8§ pixel blocks for the first image in the
“walking” set shown in Fig. 3(a). Because the dot product
between two blocks represented by n; and no coefficients
can be calculated in the DCT transform domain with only
min{nj,no} multiplications, we save a substantial amount of
computation time if we simply use the results of this stage to
straightforwardly calculate the elements of the R matrix. In
the actual program, we use pointer tables that indicate which
coefficients should be multiplied; therefore, we need not scan
all coefficients every time. In addition, we can save even more
by using the correlation between images in the set, and so, we
proceed to a grouping stage that merges blocks that are in
corresponding locations on adjacent images.

623

B. Using Interimage Redundancy by Merging
Similar Corresponding Blocks

The member 7;; of the matrix R is a dot product between
the 7th and jth images in the given set

Ny
Fp=ziex; =) biebi i, j=12...,m (34
=1

where b} is the DCT coefficient vector representing the Ith
block in the ith image, and NV, is the number of blocks in an
image. This means that the single dot product between two
images can be decomposed into a summation of dot products
between lower dimensional coefficient vectors that correspond
to the blocks. This is the key to using local similarity to save
computation.

For many practical sets of images, such as a set describing
isolated objects in different positions or a time sequence set
taken with a stationary camera, blocks in the same location on
adjacent images are often very similar. Many dot product terms
in (3.4) are therefore often identical, and repeated calculation
of these dot products can be avoided if we identify the
similarities between blocks.

A simple and efficient way is to do this is by first merging
a continuous series of nearly identical consecutive blocks
into “spatio-temporal volumes.” The volume here is a set of
blocks. We choose the first block in a certain location to
be the representative of that location’s first spatio-temporal
volume. Then, we compare this representative block with the
corresponding block from the second image, and if their mean
square difference is smaller than some threshold ¢;, we add
the second block to the spatio-temporal volume. Otherwise,
the volume is terminated, and a new volume is begun with the
second block as its representative. The coefficients considered
for finding this difference are the unions of the subsets
of coefficients retained for these two blocks. This process
continues until all m blocks at this location have been checked
and grouped into spatio-temporal volumes; then, we proceed
to group the blocks in other locations.

The result of this stage is a separate representation for each
possible block location. Each representation is a connected list
of spatio-temporal volumes that are described by the selected
DCT coefficients of its representative block and the time
indices of the images in which it begins and ends (see Fig. 4
for an illustration of the spatio-temporal volume structure).

C. Finding the R Matrix from the Spatio-Temporal
Volume Description
We use the spatio-temporal volume description to efficiently

calculate the R matrix. Let Rl be partial R matrices whose
elements are dot products between blocks in the same location
! but from images ¢ and j.

~1
R ={#li j=12,...m}

={bieb; |i, j=1,2,...,m}. (3.5)
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Fig. 3. Five sets of image sequences used in the experiments: (2) Walking; (b) talking; (c) bicycle; (d) eraser; (e) toy. Each set is composed of 256 images,
each of 128 x 128 pixels. This figure shows two image examples from each set.

-~ Images

Spatio-temporal
volumes

Fig. 4. Spatio-temporal volume structure derived by the grouping process.

Clearly, the linearity of the dot product implies that
~ N ~1
R=)"R.
=1

Thus, instead of calculating R element-by-element, we can
. . . ~1
calculate it as the sum of the partial matrices R .

We calculate each partial matrix fll only from spatio-
temporal volumes that correspond to location [. For each
pair of such volumes, we form the dot product between their
representative blocks and add it to the comresponding elements
of the matrix. If one spatio-temporal volume includes blocks
from images starting in the ;1th image and ending in the ikth
and another volume includes blocks from images starting in
the :%th image and ending in the iZth, then all the elements
7. of the matrix R’ that satisfy 4% < i < ik; i <j < i2 or
i3 <1 <i2; i} < j < 4k are identical and are equal to the
dot product between the corresponding representative blocks.

The symmetry of R is used, and only elements 7;; for which
¢ > j are actually calculated. Thus, if the number of spatio-
temporal volumes corresponding to a particular location [ is
much smaller than the number of images m, computation is

(3.6)

substantially reduced. This adds to the initial benefit of using
a subset of the coefficients to calculate each dot product. Only
the intersections of the subsets of coefficients retained for
the two representing blocks should be used, and because the
larger subset usually contains the smaller one, the number of
coefficients used is the minimum. Section IV of this paper uses
a simple model to estimate the computational saving more
quantitatively.

D. Finding the Coeigenvectors

After finding the matrix R, we proceed according to the sin-
gular value decomposition algorithm described in Section II
We start by finding the coeigenvectors of R, €;, ..., &, which
are the eigenvectors of R and by finding their associated
eigenvalues A;,..., ;. The conjugate gradient method is
used to find the vector that maximizes the Raleigh quotient
F(é) (see (2.4)) of R. This maximizing vector is the first
eigenvector. Then, R is updated using (2.5), and the process
is repeated until the specified number of coeigenvectors has
been calculated.

E. Finding the Eigenvectors

The eigenvectors are calculated as linear combinations of
the input data, weighted by the corresponding coeigenvector
elements. Instead of using the raw input data as in (2.7),
we use the adaptive spatio-temporal structure to reduce the
computation at this stage as well. This is explained by the
following simple equation. We can rewrite (2.7) using (3.1)
as follows:

e = A7 Xe; (3.7a)
=1 Uutys; (3.Tb)
=U'Nve), i=1,...,K (370

where Y is the compact representation of images, and U ™! is
an inverse DCT transformation (see Fig. 1). The calculation
using (3.7¢) is much more efficient than that using (2.7)
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The linear combination is calculated for each block location
separately using the partial DCT coefficient representation. For
each spatio-temporal volume, instead of adding all the blocks
included in it—weighted by their corresponding coeigenvector
elements—we add the representative block weighted by the
sum of these coeigenvector elements. This is similar to the
procedure calculating R described in Section III-C. Finally,
an inverse DCT transformation changes the eigenvectors into
a representation of image intensity.

IV. COMPARATIVE PERFORMANCE
ANALYSIS OF THE ALGORITHMS

Here, we introduce a simple model for the image set and
use it to evaluate the number of multiplications needed by
our new STA algorithm and the conventional SVD algorithm.
Reference to the Implicit R method [14] is also included.

Let n be the image size, m be the number of images, k be
the number of required eigenvectors, and ¢ be the number of
iterations. (Twelve iterations usually suffice.) The total number
of multiplications required by the SVD method is

direct
NSVD = N]_{u‘ec + Ncoeigenvectots + ]Veigenvectots (413)

= lnm2 + kim? + knm. (4.1b)
The STA algorithm depends on approximating the images.
Therefore, its performance depends on the degree of approxi-
mation, represented by the number of coefficients retained in
the DCT approximation and represented by the length of the
spatio-temporal volumes. Here, we show a rough estimation
of the number of multiplications (a more detailed estimation
is given in [19]). Let the parameters (3, and (3, be average
compression factors in the first DCT approximation (step 1
in the algorithm) and the second DCT approximation (step 7
in the algorithm), respectively. The performance also depends
on the variation between images expressed by parameter o,
which is the probability of a new spatio-temporal volume being
created. Detailed analysis yields the following expression in
which each term reflects the computational effort (number of
multiplications) of some stage in the STA algorithm

_ adaptive
NSTA - NDCT + NR + Ncoeigenvectors

+ NP e + NipCT (4.22)
= 1.25mn + nm(1 + a2)8, + kim?
+ mn(1 + ka)By + 1.25kn. (4.2b)
For comparison, Implicit R method requires
Nimplicie_r = kimn. 4.3)

multiplications.

To compare the various methods using the model derived
in this section, we inserted the parameters that are typical
of the “walking” set of images used for the demonstration
in the next section (see Fig. 3(a)). These parameters were
chosen to allow very little degradation in the quality of the

13 1 '&— SVD(size=1024)
£ 'mplicit_R (size=1024)

. o4& STA (size=1024)

SVD (size=128)

log10 (number of multiplications)

74 °" - Implicit_R (size=128)
__i‘_'.--"
'.-i"' STA(size=128)
3 . . v .
0 1 2 3 4

log10 (number of images in the set)

(2)

109 SVD algorithm.
(size=1024)
3 o4
g Impiicit R algorithm.
% (size=1024) SVD algorithm.
4 (size=128)
5 8 — 8
5 Implicit R algorithm. .:*
Ed (size=128) 2 oo
- £ A
S 74 A
£ A T A
STA algorithm. -
2 &4 (size=1024) .0 AN
o a_--"r <" STA algorithm.
- 4 - . -
> g---@ e (size=128)
2 LAAN T Vst
3 4

1 2
log10 (number of images in the set)
(b)
Fig. 5. (a) Number of multiplications and (b) the storage requirements for

small (128 x 128) and large (1024 x 1024) images, plotted as a function of
the number of images in the set.

derived eigenvectors (The next section defines this degradation
quantitatively.) The average number of iterations was between
10 and 14, depending on the images; therefore, we set 1 =
12 for the model. Using this model, the number of multipli-
cations was plotted for small (128 x 128) and big (1024 x
1024) images as a function of the number of images in the
set (Fig. 5(a)). We found that the number of multiplications
computed from the model roughly matched the time actually
required for the algorithms. This demonstrates that the model
is valid for predicting their performance. We also analyzed
the storage requirements [19]. The theoretical requirements
are plotted in Fig. 5(b). These graphs show the advantages of
the STA algorithm.

The advantages of our method become even more apparent
when higher dimensional data is used. The gap between the
computation time of the classic SVD method and our new
STA method increases for larger sets and larger images. For
example, when the number of images in the set is more than a
few thousand, the STA method for 1024 x 1024 pixel images
is faster than the SVD method for 128 x 128 pixel images. For
a very large number of images, the Implicit-R method becomes
competitive—first with the SVD method but also later with
the STA method. However, when the speed of the Implicit-R
method becomes comparable with that of the STA method,
the amount of main memory required becomes prohibitively
large. For such large amounts of data, the new STA method
provides a much more efficient tradeoff between main memory
requirements and the time required to use external memory.
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TABLE I
SUMMARY OF RESULTS
Parameters Quality Result
Method Set
Approx. | Approx. Reconst. error Sub-space | Relative Total
SNR | SNR, True / Approx. criterion SNR computing
(dB) (dB) (dB) (s)
SVD * © o --- 1 oo 114)
walking 29.1 41.6 0.02610 7 0.02704 0.981 42.5 164
25.1 41.6 0.02610/ 0.02725 0.870 374 135
toy 29 420 0.08601 7 0.08636 0.999 45.0 129
28 420 0.08601 / 0.08665 0.996 41.0 116
STA eraser 25.9 484 0.14094 / 0.14100 0.999 46.8 170
219 48.4 0.14094 / 0.14108 0.985 34.8 138
talking 34.1 48.1 0.00517 7 0.00522 0.993 533 188
26.7 48.1 0.00517 /7 0.00532 0951 46.8 140
bicycle 216 385 0.39772/ 0.40012 0.983 35.7 184
189 385 0.39772 7 0.40182 0.958 32.0 148

* This row is for the SVD algorithm, which gave the same results for each image set.

V. EMPIRICAL DEMONSTRATION OF THE STA METHOD

A. Data

We demonstrated our method on some typical sets of
images. We considered two types of data: fixed and changing
views of a moving object and changing views of a stationary
object. In the “walking” and “talking” image sets, the camera
was stationary while the object moved. (Figs. 3(a) and (b)
show two images from each set). In the “bicycle” set, both the
camera and the bicycle moved (Fig. 3(c)). In the “eraser” and
“toy” image sets, the object was rotated while the camera was
fixed. The “eraser” set of images was derived from a single
image given different 2-D rotations by software (Fig. 3(d)),
and the toy was given real 3-D rotations (Fig. 3(e)). The image
sets tested included 256 images, each with 128 x 128 pixels.

We describe in detail the results for the “walking” set under
different parameters and criteria but only summarize numerical
results for the other image sets in Table 1.

B. Parameters

The parameters that affect our algorithm’s performance
are the degrees of approximation allowed in the various
stages. We found experimentally that the best result was
achieved by making the spatial MSE e, allowed in the
coefficient selection stage equal to the temporal MSE &,
allowed in the grouping stage. We also found, however,
that in the final stage—finding the eigenvectors from the
coeigenvectors—approximation should be finer. The degree
of approximation in each stage was measured by the av-
erage SNR, which reflects the errors due to selecting only
some coefficients when approximating the first image. After
defining the criteria used in experimentally evaluating the
algorithm-derived eigenvectors, we will give some guidelines
for choosing the approximation parameters according to the
desired performance.
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C. Criteria

We compared the quality of the eigenvectors obtained by
the STA with the eigenvectors obtained by the SVD method,
which are denoted true eigenvectors el ,e},... el and to
the original data. Direct comparison between each of the
true eigenvectors el and the corresponding approximated
eigenvector e* obtained using the STA method may be mis-
leading because the order of two eigenvectors with very close
eigenvalues can be changed by even a small approximation.
We chose instead to compare the approximated partial eigen-
vectors with the true partial eigenvectors. Because the approx-
imated eigenvectors may not be exactly orthogonal, an orthog-
onalization process that provides orthogonalized approximated
eigenvectors v, v2', . .. v is applied when needed. We think
this potential nonorthogonality, which is in any case small,
is not a major deficiency. This is because applications that
involve extracting only a few eigenvectors usually do not re-
quire reconstruction, and representation and classification tasks
are not strongly affected by slight nonorthogonality. If exact
orthogonality is needed, orthogonalization can be performed
with less than one additional second of computation time.

The first evaluation criterion is the degree to which &
approximated eigenvectors span the subspace spanned by the
first £ true eigenvectors. This is measured by the double sum

ko k
T | AT
Subspace Criterion = z ; ; v ee;

5.1

which is 1 if the entire subspace is spanned and is smaller
than 1 otherwise.

The subspace criterion might seem too conservative because
it weights all the eigenvectors equally. A criterion that weights
them according to their contribution to the image is the re-
construction error criterion, which specifies how much of the
original energy of the images is preserved in the approximated
eigenvectors. Let z; be the jth image in the set. Then, zf,
which is the image approximated from its projections on the
k approximated eigenvectors, is given by

k
:t]A = Z(zj ovf‘)vfl.

=1

(5.2)

Denoting the energy of an image z; by ||z;||?, the reconstruc-
tion error criterion is computed as
|25 — 2|2
ll;511?

where ﬁ is the average over all images {z;, j =
1,...,m} in the set. By the energy packing optimality of
the Karhunen-Loeve expansion, only the true eigenvectors
el,e,... el will preserve the maximal energy and yield a
minimal reconstruction error. Thus, the reconstruction error
achieved by the approximated eigenvectors is a measure of
how close they are to the true eigenvectors. Another measure
is the relative SNR criterion, which is defined as
=7 |

relative SNR criterion = 10log;g § T+ _J 70 (5.4

llz 7 T Il

reconstruction error criterion =
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Fig. 6. Tradeoff between the quality of eigenvectors (measured by the
subspace criterion) and the computation time for the “walking” image set: (a)
Criterion as a function of the computation time for different approximations
in the first stage; (b) criterion as a function of the eigenvector computation
time for different approximations in the second stage.

(Here, z}‘-r is the image approximated by the true eigenvectors
and defined by an equation similar to (5.2).) This criterion is
closely related to an observer’s ability to distinguish between
images spanned by the true eigenvectors and the correspond-
ing images spanned by the approximate eigenvectors. We
found that when this criterion was 35 dB or more, the two
approximations were visually indistinguishable.

The parameters that allow significant computational savings
while keeping these criteria high depend on the images and
should be found experimentally, but the following lower
bounds on the approximation SNR’s can be used as rough
guidelines. We found that to achieve a certain relative SNR,
the approximation in the coeigenvector-to-eigenvector trans-
formation stage should be fine enough that the approximation
SNR of the second stage SNR is not lower than the desired
relative SNR. This is justified intuitively because approxi-
mating the images should result in a similar approximation
of their linear combinations: the eigenvectors. Interestingly,
the approximation allowed in the first stage is much coarser.
We found that if the approximation error in this stage is
roughly 20 times smaller (13 dB) than the reconstruction
error using true eigenvectors, then using the approximated
eigenvectors for reconstruction increases the reconstruction
error by only 1%. With the “walking” set, for example, the
first eight eigenvectors give a reconstruction error of 0.026,
which corresponds to a reconstruction SNR of 16 dB. Thus,
according to our guideline, the approximation SNR of the
first stage SNR; was chosen to be 13 dB higher, ie., 29
dB. The low approximation SNR in the first stage allows a
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Fig. 7. Coefficient selection maps for the four energy classes (“walking”
image set). The number of coefficients selected in each class is {24, 21, 13,

4 4 25 33 28 32 35 68 28 24 22 10 4 2 2 2
8 7 32 41 45 79 S50 25 28 54 43 27 8 3 4 4
8 12 20 17 12 32 11 18 36 34 68 44 32 1 5 5
47 30 23 32 31 25 29 48 36 5 1 59 31 2 5 2
23 43 44 77 S1 48 63 137 96 26 4 43 14 2 2 2
23 3 4 28 21 47 55 80 74 12 1 17 1 4 1 1
3 5 1 4 3 66 162 139 162 95 1 5 1 4 1 2
1 5 2 2 1 98 72 19 74 156 1 1 1 2 2 2
4 2 2 2 16 106 131 70 153 201 16 1 1 4 2 6
2 2 2 2 12 123 204 115 182 216 19 1 1 8 4 4
2 2 2 2 9 124 152 64 182 177 15 2 5 8 25 15
2 2 2 2 9 63 79 93 187 82 8 4 6 4 7 3
2 3 2 3 6 40 106 121 181 28 5 2 1 5 1 2
2 2 4 3 2 32 81 88 133 2 1 2 1 2 1 3
14 16 2 5 1 15 72 140 108 2 2 2 1 1 4 4
39 25 S 2 4 9 65 105 76 1 1 9 11 19 12 14

Average = 32.4

Fig. 8. Number of spatio-temporal volumes created at each block location
(“walking” image set). A lot of volumes are created at moving parts in the
image.

very efficient spatio-temporal volume structure representation,
which yields significant computational gain. Even though the
images are approximated with a large error in the first stage
(29 dB), a finer approximation in the second stage—which
requires much less time to calculate—yields a high relative
SNR (up to 48 dB in this example).

D. Results

An Apollo DN10000 workstation was used for all the
experiments. Approximations with high errors could of course
be computed more quickly, but then, the approximated eigen-
vectors did not span the optimal subspace or pack the maximal
energy. (Fig. 6 shows the tradeoff between computation time
of the R matrix and the reconstruction error for the “walking”
image set.) As a conservative condition, we used approx-
imation parameters that yielded eigenvectors that gave a
reconstruction error only 1% higher than the reconstruction
erTor using true eigenvectors.

With these conservative parameters, coefficient selection
maps (Fig. 7) were derived by the STA method. The number
of coefficients selected in each class was {24, 21, 13, 4}. The
number of coefficients selected for each block was adapted
to the amount of spatial activity at that block’s location (see
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el e2

e3 ed

Fig. 9. First four true eigenvectors derived by the (a) SVD method and the first four approximated eigenvectors derived by the (b) STA method

(“walking” image set).

Fig. 2). Then, the grouping process created the spatio-temporal
volume structure. The number of volumes created at each
location (Fig. 8) depends on the local change between the
images: more spatio-temporal volumes were created at the
center of the image, where the person was walking, and at the
top of the image, where the trees moved. The number of spatio-
temporal volumes created will depend on the approximation
parameter, but a significant saving of unnecessary calculations
is clear even with the conservative parameter chosen for this
experiment—on average, 32.4 volumes represented the 256
blocks at each location.

Because the approximation parameter used in transforming
the coeigenvectors into eigenvectors is much smaller than
that used in the calculation of R, more DCT coefficients
are selected, and more spatio-temporal volumes are created.
In fact, for the “walking” example with the conservative
criterion, the selection of coefficients yielded relatively small
savings in computation, and the grouping stage did not produce
any saving. The number of coefficients selected were {61,
59, 48, 26}, and on average, 255.3 spatio-temporal volumes
represented the 256 blocks at each location. For other image
sets and with a less severe criterion, this stage was calculated
more efficiently, but the higher approximation SNR required in
the second stage means that the saving will always be smaller
than in the first stage.

The first few approximated eigenvectors were not visually
distinguishable from the true eigenvectors (Fig. 9). The most
time-consuming part of the computation, which used to be the
calculation of R, was reduced from 1080 to 54 s (Fig. 10).
The time needed to compute the eigenvectors from the co-
eigenvectors was reduced from 47 to 37 s. However, a DCT

M iovDCT

M co-eig. o eig.
B co-eig.

R

O oer

STA

-

Fig. 10. Computation time for the different stages in the STA and SVD
algorithms (“walking” image set).

computation time of 68 s must be added to both the input and
the output times of the algorithm.

The results for each image set are quantitatively summarized
in Table I, which lists the three criteria and the computation
times for different approximations. The SVD method took
1141 s to compute the partial eigenvalue decomposition for
any of the tested sets. The STA method clearly saves a substan-
tial amount of computation while keeping the approximated
eigenvectors very close to the true eigenvectors. In all cases
tested, including the motion sequence taken with a moving
camera, the time required for the STA method (116 to 188 s)
was less than that needed for the SVD method (1141 s).

E. Potential Improvements Using Hardware

With the Apollo DN10000 workstation, it was possible to
process 1-2 frames/s using software only. The most time-
consuming stage in the STA algorithm is the standard block
DCT, which may be eliminated if input images are already
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available in block DCT representation. This transform can be
computed using on-the-shelf components that can process 2-3
frames/s. (Commercially available chips can calculate the DCT
of 256 images—128 x 128 pixels—in less than a second.)
Using a vector processor to calculate dot products could reduce
the calculation time even more. Finally, efficient parallel
implementation is straightforward because the computationally
expensive parts of each stage can be divided into independent
blocks.

VI. CONCLUSION

The use of eigenvector techniques is limited by the high
computational cost of finding the eigenvectors; therefore,
for large sets of high-dimensional data, like image sets, the
computational burden has been prohibitive. The spatial tem-
poral adaptive (STA) algorithm presented here allows fast
calculation of approximated eigenvectors of large image sets.
Spatial temporal adaptive encoding exploits redundancy both
within an image and between the images in a set before
singular value decomposition (SVD) is applied. The STA
algorithm provides results that approximate the ideal results
in a predictable and controllable way. It allows a tradeoff to
be made between computation time and the quality of the
eigenvectors. We demonstrated theoretically and empirically
that the STA method yields a large saving of computing time.
For the different kinds of images used and for the high-quality
approximation we demanded, the partial eigenvector expansion
could be computed within 116188 s, compared with 1141 s
using the SVD algorithm. This computational advantage is
expected to increase with increasing image size and set size.
For large amounts of data that require a prohibitively large
amount of memory, the STA method can provide an efficient
tradeoff between main memory requirements and the time
required to access external memory. The STA method thus
makes it practical to use eigenvector techniques to analyze
large sets of real gray-level images.
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