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a b s t r a c t

We propose a novel sequence alignment algorithm for recognizing handwriting gestures by a camera. In

the proposed method, an input image sequence is aligned to the reference sequences by phase-

synchronization of analytic signals which are transformed from original feature values. A cumulative

distance is calculated simultaneously with the alignment process, and then used for the classification. A

major benefit of this method is that over-fitting to sequences of incorrect categories is restricted. The

proposed method exhibited higher recognition accuracy in handwriting gesture recognition, compared

with the conventional dynamic time warping method which explores optimal alignment results for all

categories.

& 2010 Elsevier Ltd. All rights reserved.
1. Introduction

Camera-based analysis of human behavior has been studied for
decades [1]. Specifically, there has been a great interest in
realizing hand gesture recognition by a computer [2]. One of its
applications is handwriting gesture recognition system in which
characters written by a finger are identified as shown in Fig. 1. It
has gained attention as a novel means of man-machine
interaction [3] because: (I) users can operate computers just by
simple gestures and (II) it does not require extra equipments
except for a camera. The handwriting gesture recognition system
could be used as an input device for PDA or ATM machines.

There are two major approaches to handwriting gesture
recognition: hidden Markov model (HMM) [4] and dynamic time
warping (DTW) [5]. In the HMM-based methods [6–8], the motion
of the fingertip is used as input to the HMM network. The
direction of the fingertip motion is encoded into a two-dimen-
sional chain code and treated as an observation symbol of the
HMM network. In this framework, tracking of the fingertip
location is essential. Currently, there are several problems with
this framework. The first is the failure of tracking. It can be caused
when the fingertip is occluded by the palm. The second is the
costs of the fingertip detection. It is hard to accomplish a real-
time recognition, if great efforts and costs are required to process
each frame. An alternative way to extract features is the
eigenspace method [9] which does not require tracking nor image
analysis. Unfortunately, there is no straightforward way to
ll rights reserved.

(H. Ishida).
employ the eigenspace method in the HMM framework because
observation symbols such as the motion direction are not given.

On the other hand, the DTW provides more flexible solutions
in terms of feature extraction. In the methods [10–12] based on
the DTW, feature vectors such as hand location are compared to
those of the reference sets based on the distance calculation.
Distances between feature vectors are calculated, followed by a
cumulative distance between sequences; an input sequence is
classified to a reference sequence which gives the minimum
cumulative distance. More recently, it has been proven that the
combination of the DTW and the eigenspace method makes a
powerful tool for the image sequence recognition [13]. It not only
solves the problems of the fingertip detection, but also achieves
the robustness against image noise by using principal compo-
nents as the feature values.

However, the DTW has a drawback for the classification task.
The DTW searches the optimal alignment for the reference
sequences of all categories, which often causes misclassification
to incorrect categories due to over-fitting. To cope with this
problem, we propose a ‘‘Hilbert warping’’ method which searches
the proper alignment only for a correct category. In the proposed
method, sequences are converted into the form of analytic signals
[14]. An important property of the analytic signal is that its
instantaneous phase increases monotonically. Using this property,
both of the sequences are aligned by phase-synchronization of
their analytic signals. Undesirable over-fitting to incorrect
categories is restricted if the sequence alignment is performed
by the phase-synchronization.

In this paper, we apply the proposed method to camera-based
recognition of handwriting gestures. Fig. 2 shows the flow of the
proposed method. Firstly, image sequences are converted to a
series of feature vectors by the eigenspace method [9]. As

www.elsevier.com/pr
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Fig. 2. Proposed Hilbert warping method for handwriting gesture recognition. The

alignment is performed by synchronizing the phases of the spiral-shaped

trajectories.

Fig. 3. Construction of analytic signal. H½f ðtÞ� is the Hilbert transform of f(t). In

principle, instantaneous phase jðtÞ increases monotonically.

Fig. 1. Example of a handwriting gesture recognition system using a camera.
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proposed in a gesture recognition method [15], we adopt an
appearance-based approach in order to avoid the detection error
of a fingertip. Secondly, each feature value is transformed to an
analytic signal. The empirical mode decomposition (EMD) [16] is
introduced in the training step, to ensure that the phase of the
analytic signal should become monotonic. Finally, the cumulative
distance between two sequences are calculated by synchronizing
the phase of the analytic signals.

Up to now we have presented recognition methods using the
Hilbert warping in [17,18]. However, in [17], we did not present
the application to the handwriting gesture classification task.
Meanwhile, in [18] we did not present a training process using the
EMD. This paper presents the application of the Hilbert warping
algorithm to the handwriting gesture recognition task and the
EMD-based training algorithm.

This paper is organized as follows: Section 2 introduces the
property of analytic signals. In Section 3, the proposed Hilbert
warping method is described. Results are presented in Section 4.
2. Analytic signal

Analytic signal is often used in the domain of signal processing,
mainly for the analysis of temporal properties of signals. This
section describes its properties which are useful for the sequence
alignment, together with the transformation process.

An image sequence is transformed to analytic signals [14] for
the sequence alignment. Let f(t) be a feature value obtained from
the t-th image in the sequence. An analytic signal a(t) is composed
of the original signal f(t) as the real part and its Hilbert transform
H½f ðtÞ� as the imaginary part [19]. It is denoted as

aðtÞ ¼ f ðtÞþ jH½f ðtÞ� ¼ jaðtÞj exp½jjðtÞ�, ð1Þ

where its argument jðtÞ is defined as the instantaneous phase
given by

jðtÞ ¼ arctan
H½f ðtÞ�

f ðtÞ
: ð2Þ

In principle, jðtÞ increases monotonically, which means that a(t)
rotates counter-clockwise in the complex plane as illustrated
in Fig. 3. This is an important property for the alignment
of different sequences because frames with the same value
of jðtÞ can be aligned simply by phase-synchronization. The
instantaneous phase jðtÞ generally satisfies the monotonicity,
since the spectrum of the analytic signal contains only
non-negative frequency components. The reason why negative
frequency components are removed is shown by the following
formulae: Let FðoÞ ¼F ½f ðtÞ� be the Fourier transform of f (t), and
the Hilbert transform be written in terms of the convolution
notation as

H½f ðtÞ� ¼ 1

pt
� f ðtÞ ¼

1

p

Z 1
�1

f ðtÞ
t�t dt, ð3Þ

then the analytic signal a(t) in frequency domain is represented as

F ½aðtÞ� ¼F ½f ðtÞþ jH½f ðtÞ�� ¼F ½f ðtÞ�þ jF ½H½f ðtÞ��
¼F ½f ðtÞ�þ jF ½1=pt�F ½f ðtÞ� ¼ FðoÞþ jð�jÞsgnðoÞFðoÞ

¼ FðoÞ½1þsgnðoÞ� ¼
2FðoÞ ðo40Þ

FðoÞ ðo¼ 0Þ

0 ðoo0Þ:

8><
>: ð4Þ

Now we can see that F ½aðtÞ� does not contain negative frequency
components.

This equation indicates also that analytic signals are calculated
simply via the Fourier transforms [20]. Since Eq. (3) involves
integration over an infinite range of t, it is more practical to
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obtain the analytic signal a(t) from Eq. (4). In practice, analytic
signals are obtained by the following way:
1.
 Calculate the Fourier transform of f(x).

2.
 Double the positive frequency components Fðo40Þ, and

remove the negative frequency components Fðoo0Þ.

3.
 Calculate the inverse Fourier transform.

3. Hilbert warping method

The method for the sequence classification is described in this
section. The usefulness of the analytic signal for matching two
warped signals is indicated in [21]. However, practical alignment
algorithms for classification tasks have not been presented. Since
the algorithm in [21] used a single-dimensional signal without
removing noise components, its performance was not satisfactory
for complicated signals. The problem of over-fitting to different
categories was not discussed either. We focused on this problem
and presented a video-sequence classification method using the
analytic signals in [17]. However, it was applicable only to the
camera-based printed character recognition. In order to apply it to
various types of video sequences, we introduced the EMD which
has an ability to analyze complicated signals. Although this idea is
presented in [18], the method for separating undesirable
components from the analytic signals has not been presented.
This paper proposes a new Hilbert warping method using a multi-
dimensional feature space. Also, a technique to use the EMD in the
Hilbert warping is presented. The proposed method ensures
proper alignment for a correct category, but avoids over-fitting to
incorrect categories.

This section is organized as follows: Feature vectors used for
the recognition is introduced in Section 3.1. The definition of the
phase-difference used in the alignment process is detailed in
Section 3.2. The proposed Hilbert warping algorithm is presented
in Section 3.3. An alternative definition of the phase-difference
using the EMD is introduced in Section 3.4.

3.1. Feature vector

The proposed method uses feature vectors for the calculation
of a distance between sequences. Low-dimensional feature
vectors are obtained from images using the eigenspace method
[9]. Initially, a mean vector l and an R-dimensional eigenspace
fe1, . . . ,eRg are constructed from all reference images. Let the t-th
image in a sequence be represented by a normalized vector xðtÞ. It
is projected on the eigenspace as a point gðtÞ by

gðtÞ ¼ ½e1 � � � eR�
>ðxðtÞ�lÞ ð5Þ

¼ ½f1ðtÞ � � � fRðtÞ�
>: ð6Þ

Then the image sequence is transformed to a trajectory of points
in the eigenspace as shown in Fig. 4. These fi(t) ð1r irRÞ are used
as the feature values for the sequence alignment.
e1

t

e2

e3
x (0) x (1)

x (2) x (3)

g (0)

g (1)

g (2)

g (3)

Fig. 4. Trajectory of feature vectors in eigenspace.
3.2. Calculation of phase-difference

The proposed method requires a definition of the phase-
difference between an input frame and a reference frame. In order
to evaluate instantaneous phases, feature values need to be
transformed to analytic signals.

A feature vector gðtÞ is converted to an analytic signal vector
(ASV) by transforming each element fi(t) to an analytic signal
using Eq. (1). Let aðcÞðtÞ be a reference ASV of category c, and ainðtÞ

be an input ASV. These ASVs are denoted using reference analytic
signals ai

(c)(t) and input analytic signals ai
in(t) by

aðcÞðtÞ ¼ ½aðcÞ1 ðtÞ � � � aðcÞR ðtÞ�
>, ð7Þ

ainðtÞ ¼ ½ain
1 ðtÞ � � � ain

R ðtÞ�
>: ð8Þ

The proposed method evaluates phase-difference from the
argument (+) of the Hermitian inner product p(c)(t1,t2) given by

pðcÞðt1,t2Þ ¼ ½a
ðcÞðt1Þ�

�ainðt2Þ, ð9Þ

where the superscript * denotes the complex conjugate transpose
of a vector, and the variables t1 and t2 represent the frame indices
of the reference sequence and the input sequence, respectively.

An attractive property of the Hermitian inner product is that it
measures which instantaneous phases of the ASVs are more
advanced. We shall show this using Eqs. (1) and (9). First, let us
consider the case R¼1, where the signal is one-dimensional.
+pðcÞðt1,t2Þ is identical to the phase-difference between two
analytic signals because

pðcÞðt1,t2ÞR ¼ 1 ¼ aðcÞ1 ðt1Þa
in
1 ðt2Þ ¼ ja

ðcÞ
1 ðt1Þjja

in
1 ðt2Þjexp½jfjin

1 ðt2Þ�jðcÞ1 ðt1Þg�,

ð10Þ

+pðcÞðt1,t2ÞR ¼ 1 ¼jin
1 ðt2Þ�jðcÞ1 ðt1Þ: ð11Þ

The sign of the phase-difference indicates which instantaneous
phase is advanced; thus we increment t1 if the phase-difference is
positive, or decrement t1 if negative. This procedure drives
+pðcÞðt1,t2Þ closer to zero, at which two analytic signals have the
same instantaneous phase values. This is why the analytic signal
is useful for matching warped signals. In the cases R41, p(c)(t1,t2)
indicates the weighted sum of complex-valued phase-differences
of each principal component. It is given by

pðcÞðt1,t2Þ ¼
XR

r ¼ 1

aðcÞr ðt1Þa
in
r ðt2Þ

¼
XR

r ¼ 1

jaðcÞr ðt1Þjja
in
r ðt2Þjexp½jfjin

r ðt2Þ�jðcÞr ðt1Þg�: ð12Þ

By averaging aðcÞr ðt1Þa
in
r ðt2Þ over the principal components

ð1rrrRÞ, it is possible to estimate which phase as a whole is
advanced or delayed. Based on this property, the frame index t1 is
updated by

t1’t1þsgn+pðcÞðt1,t2Þ, ð13Þ

sgn+pðcÞðt1,t2Þ ¼
þ1 ð+pðcÞðt1,t2Þ40Þ,

�1 ð+pðcÞðt1,t2Þo0Þ,

(
ð14Þ

because it is expected that

j+pðcÞðt1þsgn+pðcÞðt1,t2Þ,t2Þjo j+pðcÞðt1,t2Þj: ð15Þ

In the alignment stage, frame t1 which corresponds to frame t2 is
sequentially searched according to the sign of +pðcÞðt1,t2Þ.
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Table 1
Hilbert warping algorithm for calculating the cumulative distance D(c) to category c.

Hilbert warping algorithm

/* Initialization */

1 DðcÞ’0, t1½1�’1, t2’1, i’1

2 do
3 do
4 calculate p(c) (t1[i],t2)

/* Search by the sign of the phase-difference */

5 t1½iþ1�’t1½i�þsgn+pðcÞðt1½i�,t2Þ

6 i’iþ1

7 until sign of +pðcÞðt1½i�,t2Þ changes

/* Distance d(c) (t1,t2) is calculated */

8 DðcÞ’DðcÞ þminid
ðcÞðt1½i�,t2Þ

9 t1½1�’argmint1 ½i�
dðcÞðt1½i�,t2Þ

10 t2’t2þ1, i’1

11 until t2 reaches the last frame

12 return D(c)

H. Ishida et al. / Pattern Recognition 43 (2010) 2799–28062802
3.3. Hilbert warping algorithm

The proposed method associates a reference sequence
ð1rt1rT1Þ with an input sequence ð1rt2rT2Þ by the algorithm
in Table 1. This algorithm explores the correspondence of frames
as illustrated in Fig. 6. The pair of aligned frames are obtained by
tracing the node (t1,t2) where +pðcÞðt1,t2Þ � 0, and simultaneously
the cumulative distance D(c) is computed. In this algorithm, the
frame-to-frame distance d(c)(t1,t2) is defined as a distance
between ASVs by

dðcÞðt1,t2Þ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
JaðcÞðt1Þ�ainðt2ÞJ

2
q

: ð16Þ

Finally, the input sequence is classified to

ĉ ¼ arg min
c

DðcÞ þ
Xt01�1

t1 ¼ 1

dðcÞðt1,1Þþ
XT1

t1 ¼ t
00

1
þ1

dðcÞðt1,T2Þ

0
@

1
A, ð17Þ

where t01 and t
00

1 are the frame indices of aðcÞðt1Þ which are aligned
to ainðt2 ¼ 1Þ and ainðt2 ¼ T2Þ by the algorithm, respectively. The
last two terms in Eq. (17) are introduced for penalizing a path in
which the input sequence is aligned to only a short part of the
reference sequence. The searched path (+pðcÞðt1,t2Þ � 0) does not
coincide with the path giving the minimal D(c) if the two
sequences cannot be aligned consistently. Consequently, this
method avoids over-fitting to incorrect categories.

3.4. Calculation of phase-difference using EMD

The phase-synchronization by Eq. (9) is effective for the
alignment only if the phase increases monotonically. Unfortu-
nately, such requirement is not satisfied unless the original fi(t)
has zero-crossing points between the local maxima and the local
minima [22]. For example, an analytic signal generated from fi(t)
in Fig. 5(a) has local loops which do not enclose the origin as seen
in Fig. 5(b). The loops often occur at the beginning and the end of
strokes where the feature values tend to be a local maxima or a
local minima. If such loops exist, phases cannot be synchronized
because of the lack of monotonicity. In order to eliminate these
loops, we apply the EMD1 to decompose fi (t) of the reference
sequences to oscillation functions which are called ‘‘intrinsic
mode functions (IMFs)’’ (Figs. 5(c) and (d)). The EMD is applied
only to the reference sequence in the training step. Some of the
1 We developed a library hht.h for using the EMD and Hilbert transform which

is distributed as part of MIST libraries [23].
IMFs should be excluded during a period where they are
considered to make loops. Suppose that bi

(c)(t) is a component
which makes loops in the reference ASVs, the following vector
should be subtracted.

bðcÞðtÞ ¼ ½bðcÞ1 ðtÞ � � � bðcÞR ðtÞ�
>: ð18Þ

This vector is calculated from the IMFs previously in the training
step. In the alignment step, bðcÞðtÞ is excluded both from reference
ASVs aðcÞðtÞ and input ASVs ainðtÞ. Accordingly, the right side of Eq.
(9) is modified as

½aðcÞðt1Þ�bðcÞðt1Þ�
�½ainðt2Þ�bðcÞðt1Þ�: ð19Þ

This modified phase-difference is useful for synchronizing the
phases, since bðcÞðt1Þ is determined such that the remaining
component aðcÞðt1Þ�bðcÞðt1Þ satisfies the monotonicity. Fig. 7 shows
an example of the analytic signal trajectory after subtracting
bi

(c)(t), where we can see that the loops in the original trajectory
have been eliminated successfully. Algorithms for the EMD and
for the calculation of bi

(c)(t) are described below. Both of them are
employed in the training step.

The algorithm of the EMD proposed by Huang et al. [24] is
outlined in Table 2. It decomposes a signal fi(t) to IMFs s(i,m)(t)
ð1rmrMÞ and a residual ri(t) as

fiðtÞ-
XM

m ¼ 1

sði,mÞðtÞþriðtÞ: ð20Þ

The value M represents the number of IMFs. It depends on the
shapes of the original signal fi(t), especially on the number of local
maxima and minima. In general, IMFs s(i,m)(t) with large m consist
of low frequency components.

The component bi
(c)(t) used for the Hilbert warping in Eq. (19)

is determined as shown in Table 3. This algorithm extracts the
component bi

(c)(t) from IMFs if the phase-difference j+zj between
the IMF and the remaining component is large.
4. Experimental results

Experiments were conducted using hand-writing gesture
datasets2 (Fig. 8) which consists of ten datasets written by
ten persons individually. Each dataset contains 26 image
sequences (48� 48 pixels, 30 frames per second) of finger-
writing characters (uppercase A–Z). Recognition rates were
evaluated by leave-one-out cross-validation; all the sequences
except for an input dataset were used as references. Even though
some characters in the datasets contained several patterns of
writing order, it was possible to obtain a correct result as long as
the reference datasets contained characters written in the same
order. The classification was based on the nearest neighbor
rule (1-NN).

The performance of the proposed method (HW+EMD) was
compared with the DTW. The cumulative distance D(c) (T1,T2) of
the DTW was calculated by

DðcÞð0,0Þ ¼ 0, ð21Þ

DðcÞðt1,t2Þ ¼min
k
fDðcÞðt1�k,t2�1ÞgþdðcÞðt1,t2Þð0ot1rT1,0ot2rT2Þ,

ð22Þ
2 Since a widely used dataset for hand-writing gesture recognition was not

available, we constructed the datasets and used them in this experiment. The

datasets can be downloaded freely for evaluation from

http://www.murase.m.is.nagoya-u.ac.jp/�hishi/finger-writing.html.

http://www.murase.m.is.nagoya-u.ac.jp/&sim;hishi/finger-writing.html
http://www.murase.m.is.nagoya-u.ac.jp/&sim;hishi/finger-writing.html
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Fig. 6. Phase-synchronization process for sequence alignment.
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Fig. 7. Elimination of loops in the analytic signal trajectory. The dotted curve

represents the original trajectory ai
(c)(t). The solid curve represents the trajectory

ai
(c)(t)�bi

(c)(t) obtained by subtracting the loop component bi
(c)(t).

Table 2
The algorithm of the EMD.

Empirical mode decomposition.

/* Initialization */

1 riðtÞ’fiðtÞ, m’1

2 do
3 h1ðtÞ’riðtÞ, n’1

/* Calculation of the m-th IMF s(i,m) (t) */

4 do
5 Extract all the local maxima and minima of hi (t)

6 Calculate an upper envelope un (t) and a lower envelope vn(t) by

interpolating the local maxima and minima, respectively, using a cubic

spline

7 hnþ1ðtÞ’hnðtÞ�½unðtÞþvnðtÞ�=2 // subtract the mean

8 n’nþ1

9 until the following stopping criterion is satisfiedP
t ½jhn�1ðtÞ�hnðtÞj

2=hn�1ðtÞ
2
�re� 0:3

10 sði,mÞðtÞ’hnðtÞ // m-th IMF

11 riðtÞ’riðtÞ�sði,mÞðtÞ // update the residual

12 m’mþ1

13 until the number of extrema of ri(t) becomes zero

14 M’m�1 // the number of IMFs

15 return s(i,m) (t), ri (t), M

According to Huang [16], it is desirable to set the threshold e of the stopping

criterion (in Line 7) to around 0.3.

H. Ishida et al. / Pattern Recognition 43 (2010) 2799–2806 2803
where d(c) (t1,t2) used for the DTW was the Euclidean distance in
the eigenspace. The following two types of slope constraints {k}
were tested:
	
 Type 1: k¼0,1,2.This constraint is used generally for recogni-
tion tasks using the DTW.

	
 Type 2: k¼�1,0,1,2. This less-constrained version of the DTW

is effective for gesture recognition [11].
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Table 3
Algorithm for extracting a component of loops.

Calculation of bi
(c) (t)

/* Initialization */

1 bðcÞi ðtÞ’0

2 for m¼M�1,M�2,y,1 // from low frequency component to high

frequency component

3 y’
PM

l ¼ mþ1 aði,lÞðtÞ�bðcÞi ðtÞ
h i

// sum of IMFs used for the alignment

4 z’aði,mÞðtÞy // calculation of phase difference

5 if jaði,mÞðtÞjo jyj // the m-th component makes a loop

6 bðcÞi ðtÞ’bðcÞi ðtÞþ
1�cos+z

2 aði,mÞðtÞ

7 next
8 bðcÞi ðtÞ’bðcÞi ðtÞþriðtÞ

9 return bi
(c) (t)

The analytic signal of the IMFs s(i,m) (t) is denoted by a(i,m) (t). The number of IMFs

determined by the EMD algorithm is denoted by M.

‘A’ (dataset 1)

‘A’ (dataset 2)

‘A’ (dataset 3)

Fig. 8. Example of images in the datasets.
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The proposed method was compared also to the simple Hilbert
warping method without EMD (HW without EMD), which
substitutes Eq. (9) for Eq. (19). The HW without EMD is identical
to the method presented in [17] with respect to the alignment
algorithm.

4.1. Main results

Fig. 9 shows the recognition rates for various dimensions. The
horizontal axis of the graph represents the dimension R of the
eigenspace. According to the results, the proposed method
outperformed the DTW regardless to the type of the slope
constraint when R42, despite that the performance of the
sequence alignment was not improved. This is because the over-
fitting to incorrect categories was restricted.

Fig. 10 shows confusion matrices of DTW (type 1) and
HW+EMD. Although mis-classifications due to untrained writing
patterns could not be corrected by any of the methods,
classification performance among some categories was
improved by using the HW, For example, categories ‘H’ and ‘M’
were distinguished more properly by the proposed method.
Unlike the DTW, the proposed method avoided the mis-
classification to category ‘M’. Fig. 11 presents some of the
distance matrices d(c) (t1,t2) for recognizing category ‘H’ in
dataset 1. In this case, the DTW incorrectly recognized the input
‘H’ as ‘M’, since the optimal alignment path to a reference ‘M’
exhibited the smallest cumulative distance. On the other hand,
the proposed method successfully rejected the incorrect category
‘M’. From the lower-right distance matrix of Fig. 11, we can see
that the actually searched path was different from the optimal
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Fig. 11. Example of distance matrices. Values of d(c)(t1,t2) are shown by the

intensity (0: black). Nodes in the meshed area were not searched.
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alignment path indicated by the black-colored nodes. These paths
were separated when the finger started writing the horizontal
stroke of ‘H’. Over-fitting to category ‘M’ was avoided as a result of
the phase-synchronization. Accordingly, it can be stated that the
phase-synchronization gave a proper alignment path for the
classification.

The results showed that the EMD was effective when 2rRr6.
This is because the monotonicity of the phase contributes to the
proper alignment of sequences especially if the number of
available feature values is small. Unlike the case where R was
large, it was not effective to counteract the loops of the analytic
signals using Eq. (10) in which all the elements of ASV are
integrated. Therefore, the use of the EMD is recommended for
robust synchronization of phases.

4.2. Comparison with regard to the number of frames

In order to study the performance under various levels of
writing speed, the number of frames was changed by three steps.
The frame rate of the input sequences was decreased to 20, 15,
and 10 fps (frames per second),3 while the reference frame rate
was 30 fps. The resulting recognition rates are shown in Fig. 12,
where the DTW (type 3) allowed slopes of k¼3 in the transition
model of Eq. (22). The slope k¼3 enables to recognize input
sequences which are three times as fast as the reference
sequences.

The performance of the DTW (type 1) dropped significantly as
the number of frames decreased. This is simply because the slope
constraint kr2 was severe. The DTW (type 3) was relatively
robust to the lower frame-rate cases, though it was less effective
at 30 fps. It is worth noting that the methods using HW yielded
higher recognition rates at all frame rates without any given slope
constraints. On the other hand, the use of the EMD did not
improve the recognition performance at lower frame rates. If the
frame rate is low, the step size of the instantaneous phase angle
3 We used 2/3, 1/2, and 1/3 frames from the original sequences, respectively.

In the case of 20 fps, we employed linear interpolation in the eigenspace to obtain

the feature vectors.
tends to be large. In such case, sparseness of the phase
measurement is a greater problem than that caused by the loops
of the analytic signals.
4.3. Computational cost

The computation time for recognizing one sequence is shown
in Fig. 13, where the results of the Hilbert warping methods
include the time required for the Hilbert transformation. The use
of the EMD did not affect the computational cost drastically, since
it is applied to the reference sequences in the training step.
Components bðcÞðtÞ, which were subtracted from the input
sequences in Eq. (18), were calculated from the reference
sequences.

The proposed method was approximately three times faster
than the conventional DTW, since the calculation of the distance
matrices d(c)(t1,t2) was drastically reduced. As shown by the
meshed area in the example in Fig. 11, the phase-synchronization
reduced calculation cycles of the distances d(c)(t1,t2). Altogether,
the proposed method (HW+EMD) achieved high recognition
accuracy with low computational cost.
5. Conclusion

In this paper, a Hilbert warping algorithm for the sequence
classification was proposed. The sequence alignment process is
based on the phase-synchronization of analytic signals. It is
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suitable for classification because incorrect categories are rejected
in the alignment process. The experimental results showed a high
classification performance of the proposed method for the hand-
writing gesture recognition task. Future works will involve the
automatic detection of human behaviors. For this purpose, the
algorithm of the Hilbert warping will be extended for the
extraction of video sequences which contain specific gestures.
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