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Abstract—This paper presents a new method for a quick
similarity-based search through long unlabeled audio streams
to detect and locate audio clips provided by users. The method
involves feature-dimension reduction based on a piecewise linear
representation of a sequential feature trajectory extracted from a
long audio stream. Two techniques enable us to obtain a piecewise
linear representation: the dynamic segmentation of feature trajec-
tories and the segment-based Karhunen-Loeve (KL) transform.
The proposed search method guarantees the same search results
as the search method without the proposed feature-dimension
reduction method in principle. Experimental results indicate sig-
nificant improvements in search speed. For example, the proposed
method reduced the total search time to approximately 1/12 that
of previous methods and detected queries in approximately 0.3 s
from a 200-h audio database.

Index Terms—Audio fingerprinting, audio retrieval, content
identification, dynamic segmentation, feature trajectories, piece-
wise linear representation.

1. INTRODUCTION

HIS paper presents a method for searching quickly through
T unlabeled audio signal archives (termed stored signals) to
detect and locate given audio clips (termed query signals) based
on signal similarities.

Many studies related to audio retrieval have dealt with con-
tent-based approaches such as audio content classification [1],
[2], speech recognition [3], and music transcription [3], [4].
Therefore, these studies mainly focused on associating audio
signals with their meanings. In contrast, this study aims at
achieving a similarity-based search or more specifically finger-
print identification, which constitutes a search of and retrieval
from unlabeled audio archives based only on a signal similarity
measure. That is, our objective is signal matching, not the
association of signals with their semantics. Although the range
of applications for a similarity-based search may seem narrow

Manuscript received December 15, 2006; revised June 17, 2007 and October
29, 2007. This paper was presented in part at the IEEE Int. Conf. Acoustics,
Speech, and Signal Processing ICASSP’02), Orlando, FL, May 2002, and at the
IEEE Int. Conf. Multimedia and Expo (ICME2003), Baltimore, MD, June 2003.
The associate editor coordinating the review of this manuscript and approving
it for publication was Dr. Michael M. Goodwin.

A. Kimura, K. Kashino, and T. Kurozumi are with NTT Communication Sci-
ence Laboratories, NTT Corporation, Atsugi-shi 243-0198, Japan (e-mail: ak-
isato@eye.brl.ntt.co.jp; kunio@eye.brl.ntt.co.jp; kurozumi@eye.brl.ntt.co.jp).

H. Murase is with the Graduate School of Information Science, Nagoya Uni-
versity, Nagoya-shi 464-8603, Japan (e-mail: murase @is.nagoya-u.ac.jp).

Color versions of one or more of the figures in this paper are available online
at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TASL.2007.912362

Content

management
center

Broadcast station

Internet radio station

Metadata of
music and
commercial titles

music and
commercials

d

Search engine

(24-hour continuous checking and identification of
music and commercials being aired)

‘ Search results

BROADCAST_
STATION_NA
ME

Tony Orlando  BJ012015 Aprogram Product A Mr. ***/Ms.
and Dawn it

WEA02135 Mr. **+

Time Program in
which
commercials
appeared

9:00:00 Tiea Yellow XX Television

Ribbon

Puff, The Peter, Paul &
MagicDragon  Mary

9:00:15 B program Product B YY Radio

11:25:45 Rose de Sable  Billy BanBan 145782 Cprogram Product C Ms. +++ 2ZZ Broadcast

Fig. 1. Automatic monitoring system of broadcast content via music content
identification.

compared with content-based approaches, this is not actually
the case. The applications include the detection and statistical
analysis of broadcast music and commercial spots, and the
content identification, detection, and copyright management
of pirated copies of music clips. Fig. 1 represents one of the
most representative examples of such applications, which has
already been put to practical use. This system automatically
checks and identifies broadcast music clips or commercial spots
to provide copyright information or other detailed information
about the music or the spots.

In audio fingerprinting applications, the query and stored
signals cannot be assumed to be exactly the same even in
the corresponding sections of the same sound, owing to, for
example, compression, transmission and irrelevant noises.
Meanwhile, for the applications to be practically viable, the
features should be compact and the feature analysis should
be computationally efficient. For this purpose, several feature
extraction methods have been developed to attain the above ob-
jectives. Cano et al. [5] modeled music segments as sequences
of sound classes estimated via unsupervised clustering and
hidden Markov models (HMMs). Burges et al. [6] employed
several layers of Karhunen-Léeve (KL) transforms, which
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reduced the local statistical redundancy of features with re-
spect to time, and took account of robustness to shifting and
pitching. Oostveen et al. [7] represented each frame of a video
clip as a binary map and used the binary map sequence as a
feature. This feature is robust to global changes in luminance
and contrast variations. Haitsma et al. [8] and Kurozumi et al.
[9] each employed a similar approach in the context of audio
fingerprinting. Wang [10] developed a feature-point-based
approach to improve the robustness. Our previous approach
called the time-series active search (TAS) method [11] intro-
duced a histogram as a compact and noise-robust fingerprint,
which models the empirical distribution of feature vectors in
a segment. Histograms are sufficiently robust for monitoring
broadcast music or detecting pirated copies. Another novelty
of this approach is its effectiveness in accelerating the search.
Adjacent histograms extracted from sliding audio segments are
strongly correlated with each other. Therefore, unnecessary
matching calculations are avoided by exploiting the algebraic
properties of histograms.

Another important research issue regarding similarity-based
approaches involves finding a way to speed up the search. Mul-
tidimensional indexing methods [12], [13] have frequently been
used for accelerating searches. However, when feature vectors
are high dimensional, as they are typically with multimedia sig-
nals, the efficiency of the existing indexing methods deterio-
rates significantly [14], [15]. This is why search methods based
on linear scans such as the TAS method are often employed
for searches with high-dimensional features. However, methods
based solely on linear scans may not be appropriate for man-
aging large-scale signal archives, and therefore dimension re-
duction should be introduced to mitigate this effect.

To this end, this paper presents a quick and accurate audio
search method that uses dimensionality reduction of histogram
features. The method involves a piecewise linear representation
of histogram sequences by utilizing the continuity and local cor-
relation of the histogram sequences. A piecewise linear repre-
sentation would be feasible for the TAS framework since the his-
togram sequences form trajectories in multidimensional spaces.
By incorporating our method into the TAS framework, we sig-
nificantly increase the search speed while guaranteeing the same
search results as the TAS method. We introduce the following
two techniques to obtain a piecewise representation: the dy-
namic segmentation of the feature trajectories and the segment-
based KL transform.

The segment-based KL transform involves the dimensionality
reduction of divided histogram sequences (called segments) by
KL transform. We take advantage of the continuity and local
correlation of feature sequences extracted from audio signals.
Therefore, we expect to obtain a linear representation with few
approximation errors and low computational cost. The segment-
based KL transform consists of the following three components:
The basic component of this technique reduces the dimension-
ality of histogram features. The second component that utilizes
residuals between original histogram features and features after
dimension reduction greatly reduces the required number of his-
togram comparisons. Feature sampling is introduced as the third
component. This not only saves the storage space but also con-
tributes to accelerating the search.
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Dynamic segmentation refers to the division of histogram
sequences into segments of various lengths to achieve the
greatest possible reduction in the average dimensionality of the
histogram features. One of the biggest problems in dynamic
segmentation is that finding the optimal set of partitions that
minimizes the average dimensionality requires a substantial
calculation. The computational time must be no more than
that needed for capturing audio signals from the viewpoint
of practical applicability. To reduce the calculation cost, our
technique addresses the quick suboptimal partitioning of the
histogram trajectories, which consists of local optimization to
avoid recursive calculations and the coarse-to-fine detection of
segment boundaries.

This paper is organized as follows: Section II introduces the
notations and definitions necessary for the subsequent expla-
nations. Section III explains the TAS method upon which our
method is founded. Section IV outlines the proposed search
method. Section V discusses a dimensionality reduction tech-
nique with the segment-based KL transform. Section VI details
dynamic segmentation. Section VII presents experimental re-
sults related to the search speed and shows the advantages of the
proposed method. Section VIII further discusses the advantages
and shortcomings of the proposed method as well as providing
additional experimental results. Section IX concludes the paper.

II. PRELIMINARIES

Let AV be the set of all nonnegative numbers, R be the set of
all real numbers, and N'™ be a n-ary Cartesian product of N.
Vectors are denoted by boldface lowercase letters, e.g., z, and
matrices are denoted by boldface uppercase letters, e.g., A. The
superscript ¢ stands for the transposition of a vector or a matrix,
e.g., x! or A". The Euclidean norm of an n-dimensional vector
z € R™ is denoted as ||z||

n 1/2

def.
lzl] = D il

i=1

where |z| is the magnitude of z. For any function f(-) and
a random variable X, F[f(X)] stands for the expectation of
f(X). Similarly, for a given value y € Y, some function g(-, -)
and a random variable X, E[f(X,y)|y] stands for the condi-
tional expectation of g(X,y) given y.

III. TIME-SERIES ACTIVE SEARCH (TAS)

Fig. 2 outlines the TAS method, which is the basis of our
proposed method. We provide a summary of the algorithm here.
Details can be found in [11].

[Preparation stage]

1) Base features are extracted from the stored signal. Our
preliminary experiments showed that the short-time
frequency spectrum provides sufficient accuracy for
our similarity-based search task. Base features are ex-
tracted at every sampled time step, for example, every
10 ms. Henceforth, we call the sampled points frames
(the term was inspired by video frames). Base features
are denoted as f¢(ts) (0 < ts < Lg), where ts rep-
resents the position in the stored signal and Lg is the
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Fig. 2. Overview of the TAS method.

length of the stored signal (i.e., the number of frames
in the stored signal).

2) Every base feature is quantized by vector quanti-
zation (VQ). A codebook {72};1 is created be-
forehand, where n is the codebook size (i.e., the
number of codewords in the codebook). We utilize the
Linde-Buzo—Gray (LBG) algorithm [16] for code-
book creation. A quantized base feature gg(tg) is
expressed as a VQ codeword assigned to the corre-
sponding base feature f¢(¢s), which is determined as

gs(ts) = arg nin. Hfs(ts) -

[Search stage]

1) Base features f(tq) (0 < tg < Lq) of the query
signal are extracted in the same way as the stored signal
and quantized with the codebook {?L}jzl created in
the preparation stage, where #( represents the position
in the query signal and L is its length. We do not have
to take into account the calculation time for feature
quantization since it takes less than 1% of the length
of the signal. A quantized base feature for the query
signal is denoted as gg(tg).

2) Histograms are created; one for the stored signal de-
noted as Z£s(ts) and the other for the query signal
denoted as . First, windows are applied to the se-
quences of quantized base features extracted from the
query and stored signals. The window length W (i.e.,
the number of frames in the window) issetat W = L,
namely the length of the query signal. A histogram is
created by counting the instances of each VQ code-
word over the window. Therefore, each index of a his-
togram bin corresponds to a VQ codeword. We note
that a histogram does not take the codeword order into
account.

3)

4)

Histogram matching is executed based on the distance
between histograms, computed as

def.
d(ts) =" |[xs(ts) — zqll .

When the distance d(tg) falls below a given value
(search threshold) 0, the query signal is considered to
be detected at the position ¢g of the stored signal.

A window on the stored signal is shifted forward in
time and the procedure returns to Step 2). As the
window for the stored signal shifts forward in time,
VQ codewords included in the window cannot change
so rapidly, which means that histograms cannot also
change so rapidly. This implies that for a given positive
integer w the lower bound on the distance d(ts + w)
is obtained from the triangular inequality as follows:

d(ts +w) > max {07 d(ts) — \/iw}

where /2 is the maximum distance between zs(tg)
and £5(ts + w). Therefore, the skip width w(tg) of
the window at the tgth frame is obtained as

w(ts) = {ﬂoor (%) +1, (fd(ts)>6) o

1, (otherwise)

where floor(a) indicates the largest integer less than
a. We note that no sections will ever be missed that
have distance values smaller than the search threshold
6, even if we skip the width w(tg) given by (1).

IV. FRAMEWORK OF PROPOSED SEARCH METHOD

The proposed method improves the TAS method so that
the search is accelerated without false dismissals (incorrectly
missing segments that should be detected) or false detections
(identifying incorrect matches). To accomplish this, we intro-
duce feature-dimension reduction as explained in Sections V and
VI, which reduces the calculation costs required for matching.

Fig. 3 shows an overview of the proposed search method, and
Fig. 4 outlines the procedure for feature-dimension reduction.
The procedure consists of a preparation stage and a search stage.

[Preparation stage]

1y

2)

3)

Base features fq(ts) are extracted from the stored
signal and quantized, to create quantized base features
¢s(ts). The procedure is the same as that of the TAS
method.

Histograms zs(ts) are created in advance from the
quantized base features of the stored signal by shifting
a window of a predefined length W. We note that with
the TAS method, the window length W varies from
one search to another, while with the present method
the window length W is fixed. This is because his-
tograms Zg(ts) for the stored signal are created prior
to the search. We should also note that the TAS method
does not create histograms prior to the search because
sequences of VQ codewords need much less storage
space than histogram sequences.

A piecewise linear representation of the extracted his-
togram sequence is obtained [Fig. 4 block (A)]. This
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Sampled
features

representation is characterized by a set T = {tj}jMzo
of segment boundaries expressed by their frame num-
bers and a set {p]()}JM=1 of M functions, where M is
the number of segments, g = 0 and ¢ty = Lg. The jth
segment is expressed as a half-open interval [t;_1,t;)
since it starts from xs(¢;_1) and ends at z5(t; 1)

Section VI shows how to obtain such segment bound-
aries. Each function p;(-) : N — R™i that corre-
sponds to the jth segment reduces the dimensionality n
of the histogram to the dimensionality m ;. Section V-B
shows how to determine these functions.
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4) The histograms zs(ts) are compressed by using the
functions {p; ()}]j\i1 obtained in the previous step, and
then compressed features yq(ts) are created [Fig. 4
block (B)]. Section V-C details how to create com-
pressed features.

5) The compressed features y 4 (ts) are sampled at regular
intervals [Fig. 4 block (C)]. The details are presented
in Section V-D.

[Search stage]

1) Base features f)(tq) are extracted and a histogram z,
is created from the query signal in the same way as the
TAS method.

2) The histogram Z is compressed based on the functions
{p;(- )}] 1» obtained in the preparation stage, to create
M compressed features y,[j] (j = 1,...,M). Each
compressed feature y, [4] corresponds to the jth func-
tion p;(+). The procedure used to create compressed
features is the same as that for the stored signal.

3) Compressed features created from the stored and
query signals are matched, that is, the distance
d(ts) = l|lys(ts) — yglitslll between two com-
pressed features yg(ts) and yglj:<] is calculated,
where j;, represents the index of the segment that
contains £5(tgs), namely tj, -1 <ts <tj,_.

4) If the distance falls below the search threshold 6,
the original histograms zs(ts) corresponding to the
surviving compressed features yg(ts) are verified.
Namely, the distance d(tg) lzs(ts) — zo| is
calculated and compared with the search threshold 6.

5) A window on the stored signal is shifted forward in
time and the procedure goes back to Step 3). The skip
width of the window is calculated from the distance
d(ts) between compressed features.

V. DIMENSION REDUCTION BASED ON PIECEWISE
LINEAR REPRESENTATION

A. Related Work

In most practical similarity-based searches, we cannot ex-
pect the features to be globally correlated, and therefore there is
little hope of reducing dimensionality over entire feature spaces.
However, even when there is no global correlation, feature sub-
sets may exist that are locally correlated. Such local correla-
tion of feature subsets has the potential to further reduce feature
dimensionality.

A large number of dimensionality reduction methods have
been proposed that focused on local correlation (e.g., [17]-[20]).
Many of these methods do not assume any specific characteris-
tics. Now, we are concentrating on the dimensionality reduction
of time-series signals, and therefore we take advantage of their
continuity and local correlation. The computational cost for
obtaining such feature subsets is expected to be very small
compared with that of existing methods that do not utilize the
continuity and local correlation of time-series signals.

Dimensionality reduction methods for time-series signals are
categorized into two types: temporal dimensionality reduction,
namely dimensionality reduction along the temporal axis (e.g.,
feature sampling), and spatial dimensionality reduction, namely
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the dimensionality reduction of each multidimensional feature
sample. Keogh et al. [21], [22] and Wang ef al. [23] have intro-
duced temporal dimensionality reduction into waveform signal
retrieval. Their framework considers the waveform itself as a
feature for detecting similar signal segments. That is why they
mainly focused on temporal dimensionality reduction. When
considering audio fingerprinting, however, we handle sequences
of high-dimensional features that are necessary to identify var-
ious kinds of audio segments. Thus, both spatial and temporal
dimensionality reduction are required. To this end, our method
mainly focuses on spatial dimensionality reduction. We also
incorporate a temporal dimensionality reduction technique in-
spired by the method of Keogh ef al. [22], which is described in
Section V-D.

B. Segment-Based KL Transform

Fig. 5 shows an intuitive example of a piecewise linear rep-
resentation. Since the histograms are created by shifting the
window forward in time, successive histograms cannot change
rapidly. Therefore, the histogram sequence forms a smooth tra-
jectory in an n-dimensional space even if a stored audio signal
includes distinct nonsequential patterns, such as irregular drum
beats and intervals between music clips. This implies that a
piecewise lower-dimensional representation is feasible for such
a sequential histogram trajectory.

As the first step towards obtaining a piecewise represen-
tation, the histogram sequence is divided into M segments.
Dynamic segmentation is introduced here, which enhances
feature-dimension reduction performance. This will be ex-
plained in detail in Section VI. Second, a KL transform is
performed for every segment, and a minimum number of
eigenvectors are selected such that the sum of their contribution
rates exceeds a predefined value o, where the contribution
rate of an eigenvector stands for its eigenvalue divided by the
sum of all eigenvalues, and the predefined value o is called
the contribution threshold. The number of selected eigenvec-
tors in the jth segment is written as m;. Then, a function
pi(-) : N — R™i (j = 1,2,..., M) for dimensionality
reduction is determined as a map to a subspace whose bases are
the selected eigenvectors:

pi(w) = Pj(z — 7)) 0)
where x is a histogram, Z; is the centroid of histograms con-
tained in the jth segment, and P; is an (n x m;) matrix whose
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columns are the selected eigenvectors. Finally, each histogram is
compressed by using the function p;(-) of the segment to which
the histogram belongs. Henceforth, we refer to p;(x) as a pro-
Jjected feature of a histogram z.

In the following, we omit the index j corresponding to a seg-
ment unless it is specifically needed, e.g., p(z) and Z.

C. Distance Bounding

From the nature of the KL transform, the distance between
two projected features gives the lower bound of the distance be-
tween corresponding original histograms. However, this bound
does not approximate the original distance well, and this results
in many false detections.

To improve the distance bound, we introduce a new tech-
nique. Let us define a projection distance §(p, x) as the distance
between a histogram « and the corresponding projected feature
z = p(z):

def.

(p,x) =" |lz - q(2)]| ©)

where ¢(+) : R™ — R™ is the generalized inverse map of p(-),
defined as

q(z) S Pz +7.

Here we create a compressed feature y, which is the projected
feature z = (21, 22, - . ., zm )" along with the projection distance

6(p,x):
y = y(p7m) = (217227' i 7Zm76(p7m))t

where y(p, £) means that ¢ is determined by p and z. The Eu-
clidean distance between compressed features is utilized as a
new criterion for matching instead of the Euclidean distance be-
tween projected features. The distance is expressed as

lys — ¥oll® = llzs — 2ol + {8(p. zs) — 6(p.20)}> @)

where 25 = p(xg) (resp. zg = p(zg)) is the project fea-
ture derived from the original histograms zs (resp. £g) and
Ys = Ys(p,Ts) (resp. yo = Yo (p,Tq)) is the corresponding
compressed feature. Equation (4) implies that the distance be-
tween compressed features is larger than the distance between
corresponding projected features. In addition, from the above
discussions, we have the following two properties, which in-
dicate that the distance |lys — yq|| between two compressed
features is a better approximation of the distance ||xs — Z¢]|
between the original histograms than the distance ||zs — 2¢]|
between projected features (Theorem 1), and the expected ap-
proximation error is much smaller (Theorem 2).
Theorem 1:

lzs = zoll <llys — yell

= min s — T
(85,80)EAWs ¥0) I = %ol
<|lzs — zql| (5)

where A(yg,yq) is the set of all possible pairs (Zs,Zq) of
original histograms for given compressed features (Y5, ¥))-
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Theorem 2: Suppose that random variables (X g, X7;) corre-
sponding to the original histograms (zs,Z¢g) have a uniform
distribution on the set A(yg,¥¢) defined in Theorem 1, and
E[6(p, X5)] > E[6(p, X§)]. The expected approximation er-
rors can be evaluated as

B [||Ix5 = X3 = lys = vollys. v

< B [|X5 - X5|I" - llzs - zalPlys.v0] - ©)

The proofs are shown in the Appendix. Fig. 6 shows an in-
tuitive illustration of the relationships between projection dis-
tances, distances between projected features and distances be-
tween compressed features, where the histograms are in a 3-D
space and the subspace dimensionality is 1. In this case, for
given compressed features (Y, yQ) and a fixed query histogram
Z(, a stored histogram £ s must be on a circle whose center is
q(zq). This circle corresponds to the set A(ys,y,))-

D. Feature Sampling

In the TAS method, quantized base features are stored, be-
cause they need much less storage space than the histogram se-
quence and creating histograms on the spot takes little calcu-
lation. With the present method, however, compressed features
must be computed and stored in advance so that the search re-
sults can be returned as quickly as possible, and therefore much
more storage space is needed than with the TAS method. The
increase in storage space may cause a reduction in search speed
due to the increase in disk access.

Based on the above discussion, we incorporate feature sam-
pling in the temporal domain. The following idea is inspired by
the technique called piecewise aggregate approximation (PAA)
[22]. With the proposed feature sampling method, first a com-
pressed feature sequence {yq(t 5)}]‘ILSS=_0W ~!is divided into sub-
sequences

{yS(ia)'/yS(ia + 1)7 A 7yS(Z'a +a— 1)}1‘,:0,1,---

of length a. Then, the first compressed feature y¢(ia) of every
subsequence is selected as a representative feature. A lower
bound of the distances between the query and stored compressed
features contained in the subsequence can be expressed in terms
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of the representative feature y¢(7a). This bound is obtained
from the triangular inequality as follows:

“’.‘Is(m + k) — ’.‘IQH > ||y5(ia) - ’.‘IQH — d(i),
d(@i) S max | [lys(ia+ k)~ ys(ia)]|
(Vi=0,1,..., Vk=0,...,a—1).

This implies that preserving the representative feature y¢(ia)
and the maximum distance d(4) is sufficient to guarantee that
there are no false dismissals.

This feature sampling is feasible for histogram sequences
because successive histograms cannot change rapidly. Further-
more, the technique mentioned in this section will also con-
tribute to accelerating the search, especially when successive
histograms change little.

VI. DYNAMIC SEGMENTATION

A. Related Work

The approach used for dividing histogram sequences into
segments is critical for realizing efficient feature-dimension
reduction since the KL transform is most effective when the
constituent elements in the histogram segments are similar. To
achieve this, we introduce a dynamic segmentation strategy.

Dynamic segmentation is a generic term that refers to tech-
niques for dividing sequences into segments of various lengths.
Dynamic segmentation methods for time-series signals have
already been applied to various kinds of applications such as
speech coding (e.g., [24]), the temporal compression of wave-
form signals [25], the automatic segmentation of speech signals
into phonic units [26], sinusoidal modeling of audio signals
[27]-[29], and motion segmentation in video signals [30].
We employ dynamic segmentation to minimize the average
dimensionality of high-dimensional feature trajectories.

Dynamic segmentation can improve dimension reduction
performance. However, finding the optimal boundaries still
requires a substantial calculation. With this in mind, several
studies have adopted suboptimal approaches, such as longest
line fitting [23], wavelet decomposition [21], [23] and the
bottom-up merging of segments [31]. The first two approaches
still incur a substantial calculation cost for long time-series
signals. The last approach is promising as regards obtaining a
rough global approximation at a practical calculation cost. This
method is compatible with ours; however, we mainly focus on
a more precise local optimization.

B. Framework

Fig. 7 shows an outline of our dynamic segmentation method.
The objective of the dynamic segmentation method is to divide
the stored histogram sequence so that its piecewise linear rep-
resentation is well characterized by a set of lower dimensional
subspaces. To this end, we formulate the dynamic segmentation
as a way to find a set 7" = {t }Ni , of segment boundaries that
minimize the average dimensionality of these segment-approx-
imating subspaces on condition that the boundary ¢; between
the jth and the (j + 1)th segments is in a shiftable range S;,
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Fig. 7. Outline of dynamic segmentation.

which is defined as a section with a width A in the vicinity of
the initial position t? of the boundary between the jth and the
(j 4+ 1)th segments. Namely, the set 7* of the optimal segment
boundaries is given by the following formula:

M
" ={ti}2
M

def. argmin = — Z(tj —tj_1)
{ti YL st e8;v5 HS 32
: C(tj—17 tj: U) ™)
S; Lt 10— A<t; <10+ A} (8)

where c(t;, t;, o) represents the subspace dimensionality on the
segment between the #;th and the #;th frames for a given contri-
bution threshold o, t; = O and ¢}, = Ls. The initial positions of
the segment boundaries are set beforehand by equi-partitioning.

The above optimization problem defined by (7) would nor-
mally be solved with dynamic programming (DP) (e.g., [32]).
However, DP is not practical in this case. Deriving ¢(¢;_1, t;, 0)
included in (7) incurs a substantial calculation cost since it is
equivalent to executing a KL transform calculation for the seg-
ment [¢;_q,%;). This implies that the DP-based approach re-
quires a significant amount of calculation, although less than
a naive approach. The above discussion implies that we should
reduce the number of KL transform calculations to reduce the
total calculation cost required for the optimization. When we
adopt the total number of KL transform calculations as a mea-
sure for assessing the calculation cost, the cost is evaluated as
O(MA?), where M is the number of segments and A is the
width of the shiftable range.

To reduce the calculation cost, we instead adopt a suboptimal
approach. Two techniques are incorporated: local optimization
and the coarse-to-fine detection of segment boundaries. We ex-
plain these two techniques in the following sections.

£ (B region to be examined tq
3 . / /_ in detail i
| |
|
\ o

* . — . 40 _
c(tj_l,tj,0)~5 c(t],tj+|,0')—8

. , 0
i & Tivi
| | |
| 1 |

\ A J

(1% . - . 0 -
('(thl’tj’ g)=35 ctjs tj+1,cr) =7

Fig. 8. Example 1: ¢(¢;,t%,,, o) decreases when the boundary t; is shifted
forward in time.
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Fig. 9. Example 2: ¢(t;_,,%;,0) increases when the boundary #; is shifted
forward in time.

C. Local Optimization

The local optimization technique modifies the formulation
[(7)] of dynamic segmentation so that it minimizes the average
dimensionality of the subspaces of adjoining segments. The
basic idea is similar to the “forward segmentation” technique
introduced by Goodwin [27], [28] for deriving accurate sinu-
soidal models of audio signals. The position ¢} of the boundary
is determined by using the following forward recursion as a
substitute for (7):

tj = arg min (t5 = #51) ¢ + (o = 1) GG
J

0 *
t;€S; tj-‘rl _tj—l

C))

which is here given by

cj = c(tj1.t,0) iy = c(tj,1541,0)

and S; is defined in (8). As can be seen in (9), we can determine
each segment boundary independently, unlike the formulation
of (7). Therefore, the local optimization technique can reduce
the amount of calculation needed for extracting an appropriate
representation, which is evaluated as O(MA), where M is the
number of segments and A is the width of the shiftable range.

D. Coarse-to-Fine Detection

The coarse-to-fine detection technique selects suboptimal
boundaries in the sense of (9) with less computational cost.
We note that small boundary shifts do not contribute greatly
to changes in segment dimensionality because successive his-
tograms cannot change rapidly. With this in mind, we assume
that the optimal positions of the segment boundaries are at the
edges of the shiftable range or at the points where dimensions
change. Figs. 8 and 9 show two intuitive examples where
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the optimal position of the segment boundary may be at the
point where dimensionality changes. The coarse-to-fine detec-
tion technique quickly finds the points where the dimensions
change. The procedure for this technique has three steps.

1) The dimensions of the jth and (j+1)th segments are calcu-
lated when the segment boundary ¢; is at the initial position
t9 and the edges (¢ — A and #9 4 A) of its shiftable range.

2) The dimensions of the jth and (j + 1)th segments are cal-
culated when the segment boundary ¢; is at the position

— A+ (2A/uj+1)i (i =1,2,...,u;), where u; de-
termines the number of calculations in this step.

3) The dimensions of the jth and (j + 1)th segments are cal-
culated in detail when the segment boundary #; is in the
positions where dimension changes are detected in the pre-
vious step.

We determine the number u; of dimension calculations in
Step 2) so that the number of calculations in all the above steps
fj(u;) is minimized. Then, f;(u;) is given as follows:

T 1)
%Uj—i—l

where K is the estimated number of positions where the di-
mensionalities change, which is experimentally determined as

fi(ug) =2 <<3+uj> LK

K; =cLr—crr1,
(if cLr < crR,cLL < CRL)
K] (CLC — CLL) + Hlin(CRC CLR) — min(ch, CRR),

(iferr > crr.crL < ¢RI, cLc < CRC)

K; =(crc — crr) + min(cre, crr) — min(cge, crr),
(if cLr > ¢rR,cLL < CRL,CLC > CRC)
K; =cgpr — cgrr, (otherwise)
and
cLL:c(t’]'f_l,t?—A,a), cRL—c( At0+1 0)

¢Lc :C(t;—ht??(j)? CRC = C(tj7tj+17 )7
CLR :C(tj_l,tg—l-A,U), CRR :C(t]-—|-A,t?+1,U) .

The first term of f;(u;) refers to the number of calculations
in Steps 1) and 2), and the second term corresponds to that
in Step 3). f;(u;) takes the minimum value 4,/2K;A + 2
when v; = /2K;A — 2. The calculation cost when incor-
porating local optimization and coarse-to-fine detection tech-
niques is evaluated as follows:

E[M (4y/2K;4 +2)] < M(4V2KA +2)
=O(MVKA),

where K = E[K,], M is the number of segments and A is
the width of the shiftable range. The first inequality is derived
from Jensen’s inequality (e.g., [33, Theorem 2.6.2]). The
coarse-to-fine detection technique can additionally reduce the
calculation cost because K is usually much smaller than A.
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VII. EXPERIMENTS

A. Conditions

We tested the proposed method in terms of calculation cost in
relation to search speed. We again note that the proposed search
method guarantees the same search results as the TAS method
in principle, and therefore we need to evaluate the search speed.
The search accuracy for the TAS method was reported in a pre-
vious paper [11]. In summary, for audio identification tasks,
there were no false detections or false dismissals down to an
signal-to-noise ratio of 20 dB if the query duration was longer
than 10 s.

In the experiments, we used a recording of a real TV broad-
cast. An audio signal broadcast from a particular TV station was
recorded and encoded in MPEG-1 Layer 3 (MP3) format. We
recorded a 200-h audio signal as a stored signal, and recorded
200 15-s spots from another TV broadcast as queries. Thus, the
task was to detect and locate specific commercial spots from
200 consecutive hours of TV recording. Each spot occurred
2-30 times in the stored signal. Each signal was first digitized
at a 32-kHz sampling frequency and 16-bit quantization ac-
curacy. The bit rate for the MP3 encoding was 56 kb/s. We
extracted base features from each audio signal using a seven-
channel second-order infinite-impulse response (IIR) band-pass
filter with Q = 10. The center frequencies at the filter were
equally spaced on a log frequency scale. The base features were
calculated every 10 ms from a 60-ms window. The base fea-
ture vectors were quantized by using the VQ codebook with 128
codewords, and histograms were created based on the scheme of
the TAS method. Therefore, the histogram dimension was 128.
We implemented the feature sampling described in Section V-D
and the sampling duration was a = 50. The tests were carried
out on a PC (Pentium 4 2.0 GHz).

B. Search Speed

We first measured the CPU time and the number of matches in
the search. The search time we measured in this test comprised
only the CPU time in the search stage shown in Section IV. This
means that the search time did not include the CPU time for any
procedures in the preparation stage such as base feature extrac-
tion, histogram creation, or histogram dimension reduction for
the stored signal. The search threshold was adjusted to § = 85
so that there were no false detections or false dismissals. We
compared the following methods:

1) the TAS method (baseline);

2) the proposed search method without the projection dis-
tance being embedded in the compressed features;

3) the proposed search method.

We first examined the relationships between the average
segment duration (equivalent to the number of segments), the
search time, and the number of matches. The following parame-
ters were set for feature-dimension reduction: The contribution
threshold was ¢ = 0.9. The width of the shiftable range for
dynamic segmentation was 500.

Fig. 10 shows the relationship between the average segment
duration and the search time, where the ratio of the search speed
of the proposed method to that of the TAS method (conventional
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method in the figure) is called the speed-up factor. Also, Fig. 11
shows the relationship between the average segment duration
and the number of matches. Although the proposed method only
slightly increased the number of matches, it greatly reduced the
search time. This is because it greatly reduced the calculation
cost per match owing to feature-dimension reduction. For ex-
ample, the proposed method reduced the search time to almost
1/12 when the segment duration was 1.2 min (i.e., the number
of segments was 10 000). As mentioned in Section V-D, the fea-
ture sampling technique also contributed to the acceleration of
the search, and the effect is similar to histogram skipping. Con-
sidering the dimension reduction performance results described
later, we found that those effects were greater than that caused
by dimension reduction for large segment durations (i.e., a small
number of segments). This is examined in detail in the next sec-
tion. We also found that the proposed method reduced the search
time and the number of matches when the distance bounding
technique was incorporated, especially when there were a large
number of segments.
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Fig. 12. Dimension reduction performance based on contribution rates: (hori-
zontal axis) segment duration [200 h—1.2 min], which corresponds to the number
of segments [1-10 000] (vertical axis) average dimensionality of projected fea-
tures per sample.

VIII. DISCUSSION

The previous section described the experimental results solely
in terms of search speed and the advantages of the proposed
method compared with the previous method. This section pro-
vides further discussion of the advantages and shortcomings of
the proposed method as well as additional experimental results.

We first deal with the dimension reduction performance
derived from the segment-based KL transform. We employed
equi-partitioning to obtain segments, which means that we did
not incorporate the dynamic segmentation technique. Fig. 12
shows the experimental result. The proposed method mono-
tonically reduced the dimensions as the number of segments
increased if the segment duration was shorter than 10 h (the
number of segments M > 20). We can see that the proposed
method reduced the dimensions, for example, to 1/25 of the
original histograms when the contribution threshold was 0.90
and the segment duration was 1.2 min (the number of segments
was 10000). The average dimensions did not decrease as the
number of segments increased if the number of segments was
relatively small. This is because we decided the number of
subspace bases based on the contribution rates.

Next, we deal with the dimension reduction performance de-
rived from the dynamic segmentation technique. The initial po-
sitions of the segment boundaries were set by equi-partitioning.
The duration of segments obtained by equi-partitioning was 12
min (i.e., there were 1000 segments). Fig. 13 shows the result.
The proposed method further reduced the feature dimensionality
to 87.5% of its initial value, which is almost the same level of per-
formance as when only the local search was utilized. We were un-
able to calculate the average dimensionality when using DP be-
cause of the substantial amount of calculation, as described later.
When the shiftable range was relatively narrow, the dynamic
segmentation performance was almost the same as that of DP.

Here, we review the search speed performance shown in
Fig. 10. It should be noted that three techniques in our pro-
posed method contributed to speeding up the search, namely
feature-dimension reduction, distance bounding, and feature
sampling. When the number of segments was relatively small,
the speed-up factor was much larger than the ratio of the
dimension of the compressed features to that of the original
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histograms, which can be seen in Figs. 10, 12, and 13. This im-
plies that the feature sampling technique dominated the search
performance in this case. On the other hand, when the number
of segments was relatively large, the proposed search method
did not greatly improve the search speed compared with the
dimension reduction performance. This implies that the feature
sampling technique degraded the search performance. In this
case, the distance bounding technique mainly contributed to the
improvement of the search performance as seen in Fig. 10.
Lastly, we discuss the amount of calculation necessary for
dynamic segmentation. We again note that although dynamic
segmentation can be executed prior to providing a query signal,
the computational time must be at worst smaller than the du-
ration of the stored signal from the viewpoint of practical ap-
plicability. We adopted the total number of dimension calcula-
tions needed to obtain the dimensions of the segments as a mea-
sure for comparing the calculation cost in the same way as in
Section VI. Fig. 14 shows the estimated calculation cost for each
dynamic segmentation method. We compared our method in-
corporating local optimization and coarse-to-fine detection with
the DP-based method and a case where only the local opti-
mization technique was incorporated. The horizontal line along
with “Real-time processing” indicates that the computational
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time is almost the same as the duration of the signal. The pro-
posed method required much less computation than with DP or
local optimization. For example, when the width of the shiftable
range was 500, the calculation cost of the proposed method was
1/5000 that of DP and 1/10 that with local optimization. We
note that in this experiment, the calculation cost of the proposed
method is less than the duration of the stored signal, while those
of the other two methods are much longer.

IX. CONCLUDING REMARKS

This paper proposed a method for undertaking quick sim-
ilarity-based searches of an audio signal to detect and locate
similar segments to a given audio clip. The proposed method
was built on the TAS method, where audio segments are
modeled by using histograms. With the proposed method,
the histograms are compressed based on a piecewise linear
representation of histogram sequences. We introduce dy-
namic segmentation, which divides histogram sequences into
segments of variable lengths. We also addressed the quick
suboptimal partitioning of the histogram sequences along with
local optimization and coarse-to-fine detection techniques.
Experiments revealed significant improvements in search
speed. For example, the proposed method reduced the total
search time to approximately 1/12, and detected the query in
about 0.3 s from a 200-h audio database. Although this paper
focused on audio signal retrieval, the proposed method can be
easily applied to video signal retrieval [34], [35]. Although the
method proposed in this paper is founded on the TAS method,
we expect that some of the techniques we have described
could be used in conjunction with other similarity-based search
methods (e.g., [36]-[39]) or a speech/music discriminator [40].
Future work includes the implementation of indexing methods
suitable for piecewise linear representation, and the dynamic
determination of the initial segmentation, both of which have
the potential to improve the search performance further.

APPENDIX A
PROOF OF THEOREM 1

First, let us define
def. def.

z2q =p(q), zs = p(xs),

~  def. A def.

2o = q(20) = ¢(p(2Q)) . Ts = q(zs) = q(p(®s)).

def. def.

6Q = 6(p7zQ)7 55 = 6(p7x5)'
We note that for any histogram z € N, T = ¢(p(z)) is the
projection of z into the subspace defined by the map p(-), and
therefore £ — Z is a normal vector of the subspace of p(-). Also,
we note that ||z — Z|| = §(p,z) and Z is on the subspace of
p(+). For two vectors &; and @, their inner product is denoted
as Ty - £o. Then, we obtain

= = N

lzq — 2s|* = ll(2q — Zq) — (@s — Bs) + (Bq — Ts)|
=llzq = Zoll” + llzs - Zs|* + 2o — Zs|I?

— 2z —%q) - (€5 — Ts)

+2(2q — Zq) - (X — Zs)

—2(xs —Ts) - (Tq — Ts)
=68(p,xq)” + 6(p,xs)” + [T — Fs ||

— 2(1‘Q — EQ) . (2?5 — L/lt\s) (10)
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>6(p,xq)* + 6(p,2s)” + [|Bq — Zs?
- 26(p7zQ) : 6(p7x5)
= {6(p.zq) — 8(p,xs)}’ + ||2g — 25|

=lyo — ysl? (11)

where (10) comes from the fact that any vector on a subspace
and the normal vector of the subspace are mutually orthogonal,
and (11) from the definition of inner product. This concludes the
proof of Theorem 1.

APPENDIX B
PROOF OF THEOREM 2

The notations used in the previous section are also employed
here. When the projected features zg, zs and the projection
distances

50 < 8(p,xg), 65 S 8(p,xs)

are given, we can obtain the distance between the original fea-
tures as follows:

lzq — @sl* =llzq — 2sl1* + 64 + 6%
- (xq —a(2q)) - (s — q(25))
=|lzq — 2zs||* + 6% + 63
— 28g0s cos ¢ (12)
where (12) is derived from (10) and ¢ is the angle between
zg —q(2¢) and x5 — ¢(zg). From the assumption that random
variables X g and X ¢ corresponding to original histograms g
and z are distributed independently and uniformly in the set
A, the following equation is obtained:

E [|lzg — zsl|* — llzq — 2s]”]
= / (63 + 6% — 20055 cos ¢)
0
Sn—m—1(55 sin d))
Snfm((SS)

|d(6s cos @)| (13)

where Sy (R) represents the surface area of a k-dimensional hy-
persphere with radius R, and can be calculated as follows:
)

(k/2)!

Substituting (14) into (13), we obtain

Sk(R) =k RF1

(14)

n—m—

[ 2
—— (5 +65)
n—m—l(%

E[l|lzg — zs|” — ||z — 2s||’]

Q

n—m

where the last approximation comes from the fact that 6 >
6p. Also, from (4) we have

Izq — zs|1% = llyo — ysl® = 2608s(1 — cos ¢).

Therefore, we derive the following equation in the same way:

E[|lzg — 25l - llyg — ysl’]
n—m-—1
=2— 600
m QO

<L E||lzq —2sl* — |z — 2s|°] -
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