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Abstract. A novel probabilistic framework is proposed for inferring
gaze patterns and the structure of conversation in face-to-face multiparty
communication, based on head directions and the presence/absence of ut-
terances of participants. First, we define three classes of conversational
regimes, which are characterized by the topology of the gaze pattern; we
assume that they indicate the structure of the conversation, i.e. who is
talking to whom. Next, the problem is formulated as joint estimation of
both regime state from the gaze pattern and utterance, and the gaze pat-
tern from head directions. We then devise a dynamic Bayesian network,
called the Markov-switching model. The regime changes over time are
based on Markov transitions, and controls the dynamics of the gaze pat-
terns and utterances. Furthermore, Bayesian estimation of regime, gaze
pattern, and model parameters are implemented using a Markov chain
Monte Carlo method. Experiments on four-person conversations confirm
accurate gaze estimation and the effectiveness of the framework toward
identification of the conversation structures.

1 Introduction

Face-to-face conversation is one of the most basic forms of communication in our
life and is used for conveying/sharing information, understanding others’ inten-
tion/emotion, and making decisions. To enhance our communication capability
beyond conversations on the spot, intense research efforts are being made to
enable teleconferencing [1], archiving/summarizing meetings [2], and computer-
mediated communication associated with social agents/robots [3]. To achieve
such prospective applications, the automatic recognition of conversational scenes,
which involve interactive human behavior both physically and psychologically,
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is a basic technical goal. Our study aims to develop a novel framework for ana-
lyzing and understanding multiparty face-to-face conversation by modeling the
relationship between the structure of the conversation and the nonverbal behav-
ior that appear in it.

Automatic meeting analysis is an emerging research area, and several methods
for the recognition of group actions in meeting have been proposed [4, 5]. How-
ever, so far, relatively little attention has been paid to the basic structure of con-
versations, known as participation roles (speaker, addressees, side-participants,
etc.) [6], i.e. who is talking to whom. The identification of participation roles is a
particularly important function for services such in automatic video summariza-
tion/editing and the social-participation robots that are expected. In the face-
to-face setting, it has been suggested that the nonverbal behavior play important
roles in the conversation, although verbal information is essential. Among various
nonverbal behavior, it is widely acknowledged that gaze serves several impor-
tant functions such as monitoring others, expressing one’s attitudes/intentions,
and regulating conversation flow [7, 8]. Based on these psychological findings, it
is suggested that since people use gaze behavior as an important cue for un-
derstanding the participants’ roles in a conversation, it should be possible to
automatically determine roles by analyzing people’s gaze [9, 10].

To analyze gaze behavior during conversations precisely and quantitatively, it
is necessary to realize the automatic measurement of gaze direction in a manner
that does not interfere with natural conversation. Unfortunately, the current
level of eye tracking techniques fails to meet such requirements, despite recent
progress [11, 12]. Instead, an approach that substitutes head direction for eye
direction has been proposed [13, 14], since recent face tracking techniques make
it easier to measure head direction than gaze [15]. This approach is based on the
theory that a person tends to focus his/her attention on the person of interest
by centering the person in his/her visual field, which results in rotation of head
and/or torso, depending on the positions of other participants.

Our study unifies the above two aspects, i)the link between the structure
of conversations and nonverbal behavior, and ii)gaze direction can be approxi-
mated by head direction, and formulates a framework for simultaneously solving
two problems: inferring the structure of conversations from gaze pattern and
utterance, and identifying gaze patterns from ambiguous head-direction mea-
surements. To that end, first, we define three classes of conversational regimes,
which can be characterized by the topology of the gaze pattern, and are assumed
to indicate the structure of conversations. Next, the problem is formulated us-
ing the dynamic Bayesian network called the Markov-switching model [16]. The
regime state changes over times based on Markovian transition properties, and it
controls the dynamics of utterance patterns and gaze patterns, which stochasti-
cally yield head-direction measurements. Furthermore, a Bayesian estimation of
the joint posterior distribution of all unknowns consisting of regime states, gaze
patterns, and model parameters is implemented with the Markov chain Monte
Carlo method, called the Gibbs sampler [17]. Experiments using 4-person con-
versation were conducted to confirm the effectiveness of the method. So far, a
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hidden Markov model (HMM) and its derivatives like coupled-HMM [18] have
been developed for the recognition of human interaction. However, in contrast to
these models, which mainly focus on direct causal relationship between visible
human actions, our study tries to explore another aspect that hypothesizes a
high-level process that governs how people interact within a social context.

This paper is rganized as follows. Section 2 defines the conversational regimes.
Section 3 proposes the model and estimation algorithm. Section 4 shows experi-
mental results. Finally, some discussion and our conclusion are presented in Sec-
tion 5.

2 Conversation Structures and Gaze Patterns

This study aims to develop a framework for the automatic estimation of the
structure of multiparty conversation from nonverbal behavior, which can be ex-
tracted from audio and visual information. As the structure of conversation, we
target participation role such as speaker, addressees, and side-participants [6],
i.e. who is talking to whom, and who is listening to whom, and the dynamics
of how the structure changes over time. To that end, we hypothesize that the
stream of a conversation can be segmented into a series of short periods, we call
regimes, which satisfy two conditions: i) a specific type of nonverbal behavior is
continuously present during the regime, and ii)each regime corresponds to a kind
of conversation structure, and its temporal changes represent the dynamics of
conversations. If such regimes could be extracted and well-defined, the structure
of a conversation could be identified by observing and analyzing the sequence of
nonverbal behavior. As the nonverbal behavior, we focused on the gaze patterns
of participants, and found that there exist a typical topology of gaze patterns
during conversations, which frequently appear and have larger temporal scales
than individual gaze directions. Moreover, our experimental results suggest a
strong link between gaze topology and the conversational structures such that
gaze-based video editing can facilitate the viewer’s understanding of recorded
conversations [19]. Based on these observations, this paper hypothesizes three
categories of conversation regimes according to the topologies of gaze patterns:
convergence, dyad link, and divergence.

First, the regime called “convergence” corresponds to the gaze pattern in
which the gazes from participants converge to one person, i.e. there is one person
attracting the others’ gazes more than the others, as illustrated in Figure 1(a).
This regime corresponds to the conversation structure that one person talks to
the others and they look at and listen to the speaker, where the person in center
of gaze convergence is the speaker, and the others are the addressees. Here,
we denote the regime as RC

i , where i indicates the center person. This regime
is related to past findings such “people gaze more while listening than while
speaking”[8].

Second, the regime called “dyad link” corresponds to the situation that two
people look at each other, i.e. mutual gaze, as illustrated in Figure 1(b). During
the regime, they exchange messages and could swap their roles of speaker and
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addressee; the others are side-participants. This regime often appears during
turn taking/giving, and is related to findings that “speakers ended an utterance
with prolonged gaze to indicate that it was the turn of one listener to speak”
[7, 20]. This regime is denoted as RDL

(i,j), where (i, j) represents the pair forming
the dyad link.

Third, the regime called “divergence” corresponds to the gaze patterns that
do not match the above two regimes, i.e. people look in different directions, as
shown in Figure 1(c). In this regime, group conversation does not occur. This
often occurs before a conversation starts or at a break point between topics. This
regime is denoted as R0.

(a) (b)

(c)

Fig. 1. Typical gaze patterns in each regime: (a)convergence, (b)dyad link,
(c)divergence, in the case of 4-person conversation, (node: person, edge: gaze direc-
tion, node without outgoing edge: averted gaze)

3 Model and Estimation

3.1 Notations

This study targets N -person face-to-face conversations (N ≥ 3). The partici-
pants are separately seated in chairs, and no one leaves/enters during the con-
versation. No tools such as notes or whiteboards are used so as not to disturb
the attention of the participants. Gaze direction was discretized to N exclusive
states: look at the face of one of the other participants or avert from all of them.
Let Xi,t be the gaze state of person i; looking at person j if Xi,t = j, (i �= j) or
avert if Xi,t = i, at time step t. We call the set of gaze states of all participants
the gaze pattern, Xt = {X1,t, X2,t, · · · , XN,t}, which takes one of NN possible
patterns. The sequence of gaze pattern is denoted by X1:T = {X1, X2, · · · , XT }.
Let St be the regime at time t; it is one of M -regimes as St ∈ R = {RC

i |i =
1 · · · , N}∪{RDL

(i,j)|i = 1, · · · , N, j = i+1, · · · , N}∪R0, where M = N + NC2 +1.
The sequence of regimes is represented as S1:T = {S1, S2, · · · , ST }.

At each time step t, the head direction hi,t of each person i is observed as
azimuth angle between world coordinate X and frontal direction of face,
as shown in Figure 3(a). We denote the sequence of observed head directions as



Probabilistic Inference of Gaze Patterns and Structure 357

H1:T = {H1, · · · , HT }, Ht = {h1,t, · · · , hN,t}. Also, state of utterance is denoted
by ui,t = 1 if person i utters and ui,t = 0 if person i is silent, at time t; the
resulting sequence is represented as U1:T = {U1, · · · , UT }, Ut = {u1,t, · · · , uN,t}.

3.2 Model Structure

To model the relationship between variables and their temporal evolution, a class
of dynamic Bayesian network called the Markov-switching model is defined as
shown in Figure 2. In Figure 2, nodes represent variables and edges represents
dependencies between variables. This model includes regime sequence S1:T and
the sequence of gaze patterns X1:T ; both of them are considered to be hidden
random variables. Also, the model includes observation processes that stochas-
tically yield both head directions with probability P (Ht|Xt) conditional to the
gaze patterns, and utterance patterns with P (Ut|St) for given regime state, at
each time step t. We assume all observations at each time step are independent,
and also head directions and utterances are independent.

X tX t−1 X t+1

Ht Ht+1Ht−1

St St+1St−1
regime
sequence

gaze
pattern
sequence

observed
head
directions

observed
utterance
pattern

t

Ut Ut+1Ut−1

.....

.....

.....

.....

Fig. 2. Graph representation of structure of Markov-switching model

In this model, the regime dynamics is assumed to be a first order Markov
process with initial probability P (S0 = R) = π0,R, R ∈ R and transition proba-
bility P (St = R′|St−1 = R) = πR,R′ , which are constant over time. These model
parameters are denoted as πR = {πR,R′ |R′ ∈ R}, Π = π0 ∪ {πR|R ∈ R}. The
sequence of gaze patterns X1:T are stochastically generated and evolved de-
pending on the transition probability P (Xt|Xt−1, St, St−1), conditioned on the
regime states. The transition probability is defined as being propotional to the
product of emission weight g(Xi,t|St) and transition weight w(Xi,t|Xi,t−1, St−1),
as written in

P (Xt|Xt−1, St, St−1) =
N∏

i=1

P (Xi,t|Xi,t−1, St, St−1), (1)
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∝
N∏

i=1

[g(Xi,t|St) · w(Xi,t|Xi,t−1, St−1)] , (2)

where we assume the conditional independency of gaze directions of each person
for a given regime state. The emission weight g(Xi,t = j|St = R) = θR,i,0,j

indicates the tendency that person i look at j during regime R, and transition
weight w(Xi,t = j|Xi,t−1 = k, St−1 = R) = θR,i,k,j indicates the tendency of
gaze changes, in which person i turn his/her gaze from k to j during regime R.
Here, we denote the gaze-related model parameters as Θ = {θR,i,k|R ∈ R, i =
1, · · · , N, k = 0, · · · , N} and θR,i,k = {θR,i,k,j}N

j=1.
Likelihood function of head direction Ht for given gaze pattern Xt is defined

using Gaussian distribution so as to reflect uncertainty in head direction, as
written in

P (Ht|Xt) =
N∏

i=1

p(hi,t|Xi,t), (3)

p(hi,t|Xi = j) = (2πσ2
i,j)

−1/2exp
[
−(μi,j − hi)2/(2σ2

i,j)
]
, (4)

where μi,j , σ2
i,j are the mean and variance of the likelihood distribution when

person i looks at j, respectively. Also, the independency of head directions of each
person for a given gaze pattern, and the temporal invariance of these parameters
are assumed. Also, the likelihood of utterance pattern is defined as P (Ut|St) =∏N

i=1 P (ui,t|St), where we assume the utterance of each person at a time step
occurs independently but conditional on regime state, and is generated by a
Bernoulli process with utterance probability P (ui,t = 1|St = R) = ηR,i.

3.3 Bayesian Estimation Via Gibbs Sampling

Based on the model proposed, the problem is to estimate the regime sequence
S1:T , gaze pattern sequence X1:T , and model parameters ϕ = {Π,Θ, {μi,j}i,j ,
{σ2

i,j}i,j , {ηR,i}R,i}, from measurements Z1:T ={H1:T , U1:T }. We employ a Bay-
esian approach to estimate the joint posterior distribution p(S1:T , X1:T , ϕ|Z1:T )
of all unknown variables for given measurements. In Bayesian analysis, a priori
knowledge about the model is represented as the prior distributions of model
parameters. To estimate the joint posterior, this study uses a Markov chain
Monte Carlo method called the Gibbs sampler [17, 21], which has an advantage
when dealing with complex models. The Gibbs sampler repeatedly generates
random samples from the full conditional posterior distributions of each unknown
variable, which constitute a Markov chain whose invariant distribution equals
the desired joint posterior. The joint posterior distribution is approximated by
a set of random samples after the Markov chain has converged.

This study employs natural conjugate prior distributions [22, 21]. Dirichlet dis-
tributions are used for the initial and transition probabilities of the regime state,
and for emission/transition weights of gaze pattern. Priors for head-direction
employ Gaussian distributions and inverse chi-squared distributions for mean
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and variance of its likelihood, respectively. Beta distribution is used for priors
of utterance probabilities. Also, full conditional posterior distributions of each
variable have the same function form as its priors. Gibbs sampling iterates a
set of procedures N times, and in each step, each variable is sequentially re-
placed by a new value that is sampled from its full conditional. For example, the
regime state St and the gaze pattern Xt are sampled from their full conditionals,
respectively, as written in

P (St|S1:T \ St, X1:T , ϕ, Z1:T ) ∝ P (St|St−1) · P (St+1|St)
·P (Xt|Xt−1, St, St−1) · P (Xt+1|Xt, St+1, St) · P (Ut|St),

P (Xt|S1:T , X1:T \ Xt, ϕ, Z1:T ) ∝ P (Xt|Xt−1, St, St−1)
·P (Xt+1|Xt, St+1, St) · P (Ht|Xt).

After the iterations terminate, statistics are calculated from the samples
{S

(q)
1:T , X

(q)
1:T , ϕ(q)} for iteration steps q = N ′ to N to ensure convergence. For

regime sequence and gaze sequence, the maximum a posterior estimate is cal-
culated as Ŝt = argmaxR∈R

∑N
q=N ′ δR(S(q)

t ), where δR(R′) = 1 if R = R′,
otherwise δR(R′) = 0. For other variables, the minimum mean-squared error
estimates are calculated as in μ̂ = (N − N ′ + 1)−1 ∑N

q=N ′ μ(q).

4 Experiment

4.1 Recording Data and Initial Setting

Data were recorded for 4-person group conversations. The participants were four
women within the same age bracket. They were instructed to have a discussion
and try to reach a conclusion as a group for a given discussion topic (“Is marriage
and love same or different?”), within five minutes. The head directions were mea-
sured at 30Hz with magnetic-based 6-DOF sensors (POLHEMUS FastrakTM),
which were attached to their heads with hair bands. Figure 4(a) shows the first
3600 time steps (=2[min]) of head azimuth of each participant. Audio data were
recorded with clip-on microphones attached to each participant, and utterance
intervals were manually extracted using a waveform editor. Figure 4(b) shows the
utterance intervals of each participant. Also, video sequences, whole shot (Figure
3(b)) and bust shots (Figure 8(a)), were recorded at 30[frame/sec]. These data
were synchronized and 10000 time steps (=frames, � 5.6[min] ) were used in the
analysis. Ground truth of gaze direction at each time step was manually created
by watching the video sequences.

Hyper parameters for prior distribution were set based on the following policy.
The bearing angles Δφi,j given by the relative positions of participants, were
employed as the mean values of prior distribution of head-direction likelihood
(See Figure 3(a)). In regime ‘convergence’, the gaze-direction distribution of the
speaker is set to uniform, while others look at the speaker with high probability
(0.7). In regime ‘dyad link’, the pair look at each other with high probability
(0.95), while the two others look around randomly. In regime ‘divergence’, people
look at various directions with uniform probability.
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(a) (b)
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Fig. 3. Overview of scene. (a)plan view of participants’ allocation, (b)whole view of
participants.
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Fig. 4. Observed data for 2[min], (a)head azimuth, (b)temporal intervals with utter-
ance, for participants
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Fig. 5. Transition of μ1,1, μ1,2, μ1,3, μ1,4 through iteration of Gibbs sampler

4.2 Results

Estimation results were obtained after N = 700 iterations of Gibbs sampling
(N ′ = 500). Figure 5, which shows the transition of the mean {μ1,j}4

j=1 of
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Fig. 6. Estimated likelihood function p(h1|X1 = i) (person 1 look at person if i �= 1,
or avert gaze if i = 1), and line with symbol shows corresponding histogram, (symbol
= diamond: avert, star: gaze at P2, triangle: gaze at P3, square: gaze at P4)
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Fig. 7. Estimated sequences of (a)gaze pattern {X1,t, X2,t, X3,t, X4,t} and (b)regime
states. In (a), solid lines : estimates, dashed lines : ground truth. In (b), single band
at a time slice indicates regime RC

i (convergence), dual band at time slice indicates
regime RDL

(i,j) (dyad link), and no band indicates R0 (divergence).

head-direction likelihood distribution as a function of iteration step number,
shows that convergence was achieved. Figure 7(a) shows the estimation result of
gaze direction and the corresponding ground truth, illustrated for a 2[min] pe-
riod. Average correct ratio of the number of frames wherein estimates and ground
truth coincide, was 71.1%. Most errors were related to the ‘avert’ gaze status.
This is because human can avert/turn their gaze from/on someone without mov-
ing their head, e.g. using a sidelong glance. Also, the cause of the error can be
explained by Figure 6, which shows the estimated distributions of head-direction
likelihood and histograms of head direction for separate gaze directions. In Fig-
ure 6, both distributions exhibit significant overlaps between that for averted
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gaze and those of the others. In addition, the average correct ratio of maximum
a posteriori estimates based on the ground truth of gaze direction was 68.8%.
Given that our result from ‘unsupervised learning’ was better than one from
‘supervised learning’, it is suggested that the proposed framework is an effective
methodology for detecting gaze direction.

1 2 3 4

1 2 3 4

1 2 3 4

t=t1

P1
P2

P3
P4

P1
P2

P3
P4

P1
P2

P3
P4

(b)

(a)

t=t2 t=t3

t=t1

t=t2

t=t3

RC
4 RC

2RDL
(2,4)

Fig. 8. An example of regime transition (t1 = 310, t2 = 485, t3 = 578). (a)snapshot of
each participant, (b)regime estimates and gaze patterns (solid arrows: estimates, wide
arrows: ground truth).

Figure 8 shows an example of regime transition; RC
4 → RC

(2,4) → RC
2 . Figure

8(a) shows bust-shot images of each participant and Figure 8(b) shows gaze
patterns. At first (t = 310), person 4 talked to all others (P4:“Even if I am
not thinking of marriage, I have to think about having relations, I mean..”) and
others listen to person 4. This form of conversation was indicated by estimated
regime RC

4 . Next (t = 485), person 2 responded to person 4 saying (P2:“Yes,
yes, yes, yes, yes”) with nodding, and P4 looked at P2 to confirm the response
from her. There was mutual gaze between person 2 and 4, which is indicated by
regime estimate, dyad link RDL

(2,4). Furthermore (t = 578), P2 keep on speaking
(P2:“yes, in terms of ever since”) and person 4 returned response back to P2
saying (P4:“yes, yes”) and then stopped speaking, which indicated that P4 was
offering the floor to P2. At the same time, person 3 turned her gaze from P4 to
P2, in order to watch what P2 would say. From the above results, it is confirmed
that the estimated regimes seem reasonable and could be used as an indicator
of conversation structure.
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5 Discussion and Conclusion

A probabilistic framework based on head directions and utterances was proposed
for inferring gaze patterns and the structure of conversations in face-to-face mul-
tiparty communications. To that end, we devised the Markov-switching model,
whose hidden states correspond to the regime and gaze patterns. A Bayesian
estimation of all unknown variables including model parameters is carried out
using the Gibbs sampler. Experiments on four-person conversations confirmed
the effectiveness of our framework. As the next step, it is necessary to evaluate
the sequence of regime estimates by comparing them with actual events that
take place during conversations. Also, we need to increase the amount of data so
that it includes different people, different group size, and various actions such as
locomotion and note-taking. The proposed framework can be extended to incor-
porate other human behavior such as head gestures like nodding and shaking,
facial expressions, and prosody. Furthermore, real-time online estimation and
image-based head tracking are required to develop practical applications.
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