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Abstract

Drivers obtain information on surrounding environment
using their eyesights. Experienced eye-gaze behavior is
needed when driving at places where multiple risks exist
to prepare for and avoid them. In this work, we analyze
the change in eye-gaze behavior in such situations while
a driver gains experience on the operation of a robotic
wheelchair. Accurate distance information in the traffic en-
vironment is important to analyze the eye-gaze behavior.
However, almost all previous works analyze eye-gaze be-
havior in a 2D environment, so they could not obtain ac-
curate distance information. For this reason, we analyze
eye-gaze behavior in 3D space. Concretely, we developed
a novel eye-gaze behavior analysis platform based on a
robotic wheelchair and estimated the driver’s attention in
3D space. We try to analyze the eye-gaze behavior consid-
ering a useful field-of-view in 3D space based on the dis-
tance information instead of only the fixation point to in-
vestigate the objects that a driver implicitly pays attention
to and from where s/he focuses on them. Results show that
novice drivers pay attention to a single risk at a time. In
contrast, they pay more attention to multiple risks simulta-
neously as they gain experience. Additionally, we discuss
what features are effective to model the eye-gaze behavior
based on the results.

1. Introduction

The demand for personal mobility vehicles like an elec-

tric wheelchair is increasing. However, while people can

move easily driving them, they can also cause many traf-

fic accidents. In general, drivers obtain information on

surrounding environment using their eyesights, but several

studies report that the eye-gaze behavior of expert drivers

differ from that of novice drivers [23]. However, the dif-

ference in eye-gaze behavior between expert and novice

(a) Driver’s view with gaze point.

Scene camera

Eye cameras

(b) Eye-tracking glasses.

Gaze vector

Driver’s attention

(c) Visualization on the 3D map

LiDAR sensor (Velodyne 32)

IMU

Joystick

Motion capture device

(d) Robotic wheelchair.

Figure 1: Concept of the analysis. We use a robotic

wheelchair (d) equipped with sensors and eye-tracking

glasses (b). (c) shows an example of a visualization of the

driver’s gaze vector and attention on the 3D map. The gray

area and the yellow circles represent the course and the ob-

stacles respectively.

drivers have not been clarified at places with multiple risks

where experience plays a huge role.

Our motivation is to investigate the objects that a driver

implicitly pays attention to and from where s/he focuses

on them. This requires analyzing eye-gaze behavior in 3D

space. Since almost all past works analyze eye-gaze be-

havior in 2D environment [4, 15], the analyses were limited
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due to the difficulty of obtaining accurate distance informa-

tion. Additionally, most previous studies [17, 20] analyze

the eye-gaze behavior based on the fixation point. How-

ever, they could only determine what drivers strongly fo-

cus on although they are actually implicitly paying atten-

tion in a wider range of field-of-view. To overcome these

problems, we consider the useful field-of-view in 3D space

which spreads like an elliptical cone from the driver’s eyes

based on the distance information instead of only the fixa-

tion point.

For analyzing the eye-gaze behavior in 3D space, we

developed a novel eye-gaze behavior analysis platform as

shown in Figure 1. The platform is implemented on a

robotic wheelchair (d) and it can recognize its own accu-

rate pose on a 3D map (c). Additionally, the wheelchair is

equipped with a motion capture device in its front to track

eye-tracking glasses with motion capture markers which

estimates their poses. Based on pose estimation of the

wheelchair and eye-tracking glasses with eye-gaze mea-

surement results, we can estimate the driver’s eye-gaze vec-

tor in the 3D map. As a result, we can analyze the eye-gaze

behavior taking accurate distance information into consid-

eration.

To prevent traffic accidents in a place with multiple risks,

we consider that it would be effective to support visual cog-

nition of drivers by presenting as a reference, the eye-gaze

behavior of experienced drivers. For this, in this work, to

model the eye-gaze behavior of experienced drivers, we an-

alyze the change in eye-gaze behavior when a driver gains

experience on the operation of the robotic wheelchair. We

prepared a narrow course with blind corners as the place

with multiple risks, which we assume that experienced

drivers can pay attention to all of them at the same time. To

confirm this assumption, we establish hypotheses for eye-

gaze behavior to clarify the difference between experienced

and novice drivers. Results from an experiment using the

robotic wheelchair show that novice drivers pay their atten-

tion to a single risk at a time, but eventually they pay more

attention to multiple risks as they gain experience. Finally,

we will discuss what features are effective to model the eye-

gaze behavior based on the results.

The contributions of this paper are as follows:

• We develop a 3D measurement technology to estimate

what a driver focuses on considering the useful field-

of-view as an elliptical cone.

• We analyze how driver experience affects eye-gaze be-

havior for robotic wheelchair operation in a narrow

course with blind corners where multiple risks exist

and discuss how to model them.

The rest of this paper is organized as follows. Section 2

summarizes related work. Section 3 describes our analysis

methodology of eye-gaze behavior in 3D space. Section 4

describes the metrics for analyzing the eye-gaze behavior.

Section 5 details an experiment in which inexperienced par-

ticipants drive the robotic wheelchair. Section 6 reports the

analysis of the relationship between driving experience and

eye-gaze behavior. Finally, we conclude with a brief sum-

mary in Section 7.

2. Related work
In general, regardless to the task, eye-gaze behavior is

different between experienced and novice persons. The dif-

ference is mainly due to experience and knowledge. For

example, Iwatsuki et al. [7] analyzed that an experienced

soccer coach gazes at the ball at high frequency when it is

located in the middle of the soccer field, and at low fre-

quency when it is located in front of either goal, whereas

a novice coach gazes to the ball at high frequency regard-

less of where it is located. Such differences are studied

in various fields, e.g., chess [18], bonsai [14], and other

sports [7, 11, 25].

Such a difference is also seen in driving scenarios. Sev-

eral studies report that eye-gaze behavior differs between

experienced and novice drivers. Underwood et al. [23] an-

alyzed that scanpaths in eye movements differ. They an-

alyzed the scanpath between subdivided regions of a driv-

ing scene such as near left, far ahead, and mid right on the

road. On the other hand, the aim of our work is the detailed

analysis of what drivers look and from where drivers pay

attention to. Van Leeuwen et al. [24] found that horizontal

gaze variance decreases and the percentage of gazing at the

center of the road increases as drivers gain driving experi-

ence. However, what the drivers look at was not clarified in

their study. Pradhan et al. [16] report that risk perception

of experienced drivers is higher than that of novice drivers

in many situations. In addition, these works [16, 24] are

performed on driving simulators which is limited to 2D vi-

sual environments. In our work, we analyze what the driver

looks at in a situation with multiple risks when driving in an

actual environment.

3. Analysis methodology of eye-gaze behavior
in 3D space

In this section, we describe how to analyze the eye-gaze

behavior in 3D space. The experimental robotic wheelchair

we developed for acquiring driving data is shown in Fig-

ure 1(d). A LiDAR sensor1, Inertial Measurement Unit

(IMU)2, and motion capture device3 are attached to it. Tobii

Pro Glasses 2 is used as eye-tracking glasses to acquire eye-

gaze behavior data, as shown in Figure 1(b). We can esti-

mate the position and orientation of eye-tracking glasses by

1Velodyne HDL-32
2Xsens MTi-300-2A5G4
3Optitrack V120:TRIO
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Figure 2: Coordinate system of the eye-tracking glasses.

attaching spherical markers to the eye-tracking glasses and

tracking them with the motion capture device.

3.1. Localization

To analyze in 3D space, we need to localize the robotic

wheelchair on a 3D map. We make a 3D map with Simulta-

neous Localization and Mapping (SLAM) [5] using LiDAR

beforehand. Then, we estimate the position of the robotic

wheelchair on the map with Adaptive Monte Carlo Local-

ization (AMCL) [2, 22] using the 3D point cloud acquired

from the LiDAR, the 3D map and odometry information

estimated from velocity, acceleration, and angular velocity

of the robotic wheelchair. We define the coordinate sys-

tem of the robotic wheelchair in the map. We also define

the coordinate systems of the LiDAR sensor and the motion

capture device by measuring relative positions and orienta-

tions from the coordinate system of the robotic wheelchair.

Based on them, we estimate their positions and orientations

on the 3D map. Furthermore, the position and orientation

of eye-tracking glasses with spherical markers on the 3D

map are estimated from the tracking results of the motion

capture device. Based on the results and eye-gaze measure-

ment, we estimate the gaze vector in the 3D map. As shown

in Figure 2, we take x, y, and z-axes whose origin (Og) is

the position of the scene camera of the eye-tracking glasses

as shown in Figure 1(b).

3.2. Determining objects in the useful field-of-view

We consider the field-of-view to analyze eye-gaze be-

havior. It is roughly divided into the central and peripheral

visual fields, as shown in Figure 3. The closer an area is to

the gaze point, the clearer it is visually. The region where

an object is relatively clearly visible in the peripheral visual

field is called the useful field-of-view. Almost all previous

studies determine an object in the central visual field as the

focused object. However, it is not an appropriate determi-

nation because drivers do not necessarily look at an object

only in their central visual field, but they also pay attention

to objects in the useful field-of-view, too [13]. For this rea-

son, we determine the focused object considering the useful

field-of-view. We need to analyze in 3D space because the

useful field-of-view spreads like an elliptical cone from the

Peripheral visual field

Useful field-of-view

Central visual field

Figure 3: Human field-of-view.

driver’s eyes.

We determine objects in the useful field-of-view by us-

ing the gaze vector and 3D point cloud. An object is deter-

mined to be in the useful field-of-view if its 3D point cloud

exists within the field, as shown in Figure 4(a). The use-

ful field-of-view differs according to psychological factors,

age, and so on. In this paper, we define the range of the

useful field-of-view as between 15 degrees on both left and

right sides, and 8 degrees above and 12 degrees below ac-

cording to Hatada’s definition [6].

First, we draw a line connecting Og and point p in a 3D

point cloud, and then determine the intersection point of the

line and the x-y plane (z = 1) as shown in Figure 4(b). Sim-

ilarly, we determine the intersection point of the gaze vector

and the x-y plane (z = 1). Then, we determine angle α be-

tween the line connecting these intersections and the x-axis.

The elliptical circumference in Figure 4(c) shows the use-

ful field-of-view. The line segments shown in Figures 4(b)

and 4(c) are the same. As shown in Figure 4(c), the bound-

ary angle corresponding to angle α is determined. Finally,

we determine angle β of the line connecting Og and p and

the gaze vector as shown in Figure 4(a), and compare β with

the boundary angle. If β is smaller than the boundary angle,

the object is assumed to be in the useful field-of-view. This

process is applied to each point in the 3D point cloud.

4. Hypotheses and metrics for the analysis
This section describes the hypotheses on the eye-gaze

behavior on a narrow course with blind corners to clarify

the difference between experienced and novice drivers. To

confirm these hypotheses, metrics for analyzing eye-gaze

behavior are proposed.

4.1. Hypotheses for eye-gaze behavior on a narrow
course with blind corners

We consider a narrow course with blind corners on both

sides. The risks here are represented mostly by the follow-

ing two.

• Robotic wheelchair deviating from the drivable path.
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p in a 3D point cloud.
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(z = 1).

Boundary angle

������

���

��

�

(c) Boundary.

Figure 4: Determination of focused objects in the useful

field-of-view.

• Pedestrian suddenly running out in front of the robotic

wheelchair.

Based on the above, we establish hypotheses for the change

in eye-gaze behavior in relation to the increase of robotic

wheelchair driving experience as follows:

• Eye-gaze behavior of a novice driver is mostly focused

on not deviating from the drivable path.

• Eye-gaze behavior of an experienced driver is balanced

between averting both risks mentioned above.

4.2. Metrics for analyzing eye-gaze behavior

We assume that analyzing to what, from where, and how

drivers pay their attention is important when analyzing the

change in eye-gaze behavior in relation to the increase of

driving experience. We propose the following metrics on

gaze direction and the focused object.

• Gaze direction metric

Gaze vector

Moving direction of 
the robotic wheelchair

Vertical gaze angle

Figure 5: Definition of vertical gaze angle.

– Vertical gaze angle

• Focused object metrics

– Gaze frequency

– Proportion of focusing time

– Distance to the focused object

4.2.1 Gaze direction metric

We assume that novice drivers tend to look downwards to

recognize the running path. In contrast, we assume that ex-

perienced drivers tend to look ahead because they are care-

ful with pedestrians suddenly running out from the blind

corners and recognize the drivable path further away. To

confirm these assumptions, we set vertical gaze angle as the

gaze direction metric. Figure 5 shows the vertical gaze an-

gle when the robotic wheelchair is viewed from the side.

First, we transform the gaze vector from the eye-tracking

glasses coordinates to the robotic wheelchair coordinates.

Here, we define the pitch on the robotic wheelchair coor-

dinate system as the vertical gaze angle. Note that it takes

0 degrees when the driver looks vertically down and 180

degrees when the driver looks vertically up.

4.2.2 Focused object metrics

We also use gaze frequency, the proportion of focusing

time, and the distance to the focused object as the focused

object metrics. The gaze frequency represents the number

of times a driver pays attention to a specific object within a

specific period. The proportion of focusing time is the total

time an object is focused on divided by the total length of

the data. These have been used in previous studies [3]. We

assume that the gaze frequency and the proportion of fo-

cusing time to the blind corners by experienced drivers are

higher compared to novice drivers. Here, we propose the

distance to the focused object in addition to these two met-

rics. It represents the distance of a driver to the object s/he

is focusing on. We assume that experienced drivers move

their eyes to detect and prepare for risks earlier than novice

drivers.
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5. Experiment
We conducted an experiment where inexperienced par-

ticipants drove the robotic wheelchair to confirm our hy-

potheses described in Section 4. Here, we define partici-

pants without driving experience as novice drivers and par-

ticipants with driving experience as experienced drivers. In

other words, the experiment participants will transit from

novice to experienced drivers during the experiment. We

analyze the change in eye-gaze behavior as drivers gain ex-

perience. In this section, we describe the actual experiment

course, the experiment procedure, and the acquired data.

5.1. Experiment course

We conducted the experiment in an indoor environment

at our University. Figure 6(a) shows the map of the indoor

environment. A narrow course was simulated by placing

pylons on a corridor. We analyzed the data acquired in the

green area shown in Figure 6(b). Figure 6(c) shows the lay-

out of the pylons. As shown in Figure 6(b), there are blind

corners on both sides.

5.2. Experiment procedure

First, we instructed the experiment participants as fol-

lows:

• There are some people on this floor and some of them

may run out. Be careful of pedestrians.

• There is a section where pylons are placed on the route.

Pass between the pylons there.

• Do not collide with the pylons.

Then, the participants practiced driving the wheelchair on

the above course for three laps. The pylons were not set

at this time. After the practice, we set the pylons and in-

structed the participants to drive 29 laps There was a 30-

second break between laps and the participants could take

an additional break if they got tired. An experiment collab-

orator ran out in front of the robotic wheelchair from each

blind corner in order to make the participants aware of risks.

The events took place twice from each blind corner and on

laps 6, 12, 18, and 24. Note that we do not use data includ-

ing the events or acquired on laps where a collision with a

pylon accidentally occurred.

We measured the eye-gaze behaviors of five participants;

male students in their twenties and are inexperienced with

driving robotic wheelchairs before participating. Note that

this experiment was conducted after obtaining the approval

of the Ethics Committee of the University.

5.3. Acquired data

We acquired the following data through the experiment.

(a) Floor map. Experiment participants drove along the red line in

clockwise.

(b) Experiment course.

1.0m
0.8m

0.2m

0.5m

0.38m

Row 1

Row 2

Row 3

Row 4

(c) Layout of pylons. The

robotic wheelchair cannot

keep running straight when

passing between pylons.

Figure 6: Experiment course and layout of pylons. We ac-

quired data in the green area. Blue circles indicate blind

corners. While there were unrelated people walking in the

vicinity, only the experiment participants and collaborators

entered the green area.

• Image from scene camera embedded on eye-tracking

glasses (25 Hz)

• Gaze vector (25 Hz)

• 3D point cloud of the surrounding environment from

the LiDAR (10 Hz)

• Velocity and acceleration of the robotic wheelchair

(30 Hz)

• Acceleration and angular velocity from IMU (80 Hz)

• Position and orientation of eye-tracking glasses from

motion capture device (125 Hz)
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Figure 7: Vertical gaze angle of each experiment.

Note that we synchronized the data based on the timestamp

of the gaze vector.

6. Analysis of the relationship between driving
experience and eye-gaze behavior

We analyze the obtained eye-gaze behavior based on the

metrics described in Section 4.

6.1. Analysis by gaze direction metric

Figure 7 shows the vertical gaze angles of each exper-

iment participant on each lap and their linear regression

calculated by the least-squares method. The linear regres-

sion lines of all participants show an upward trend. This

is because they looked at nearby pylons to prevent the

wheelchair from colliding with them while they were in-

experience. However, they eventually looked at pylons fur-

ther away and became aware that pedestrians might sud-

denly run out from the blind corners as they gained driving

experience.

6.2. Analysis by focused object metrics

Next, we analyze what and from where the experiment

participants focused on using the focused object metrics.

The objects are classified into “pylons”, “blind corners”,

and “others”. Additionally, the pylons are divided into the

first, the second, the third, and the fourth row pylons in or-

der of passage as shown in Figure 6(c). Although the pylons

and the blind corners exist on both sides, we do not distin-

guish them to calculate the gaze frequency and the propor-

tion of focusing time. We divide the data per five laps into

laps 1–5, laps 7–11, laps 13–17, laps 19–23, and laps 25–29.

Figure 8 shows the average gaze frequency and the propor-

tion of focusing time for the blind corners for five partici-

pants. The proportion of focusing time to the blind corners
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(a) Gaze frequency.
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(b) Proportion of focusing time.

Figure 8: Gaze frequency and proportion of focusing time

to the blind corners. Dotted lines represent the linear re-

gression calculated by the least squares method. Note that

we do not analyze data on laps 6, 12, 18, and 24 because

an experiment collaborator ran out in front of the robotic

wheelchair from each blind corner.

increases, meaning the participants increased the duration

they paid attention to the blind corners so they could pre-

pare for pedestrians running out as they gained driving ex-

perience.

We analyze from where the participants focused on the

pylons referring to the distance to the focused objects. The

distance from the blind corners are defined as shown in Fig-

ure 9. The distance is discretized at an interval of 0.1 m

and the proportion of focusing time to each pylon is cal-

culated at each interval, as shown in Figure 10. Note that

the robotic wheelchair ran from left to right in the figure.

As a result, the proportion of focusing time to each pylon

from a distant position increased as drivers gained driving

experience. This is because the participants’ eye-gaze be-
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Wall
Blind corner

Blind corner
Wall

Figure 9: Distance of pylons from the blind corners.

haviors changed to capture distant pylons, i.e. the third

and the fourth row of pylons, in the useful field-of-view

while keeping their attention to nearby pylons to prevent the

wheelchair from colliding with them. Moreover, the timing

to remove each pylon from the useful field-of-view became

earlier as they gained driving experience. This is because

they switched their gaze earlier to prepare for other risks.

Summarizing the obtained results, we can confirm that

the novice drivers looked at nearby pylons to prevent the

robotic wheelchair from colliding with them, but as they

gained driving experience, they started paying attention to

multiple risks by focusing on further pylons and allocating

more time to focus on blind corners.

6.3. Discussion

Our final objective is to model the eye-gaze behavior of

expert and novice drivers separately since we need to under-

stand the causes behind the difference in the eye-gaze be-

haviors. There are various behavior modeling methods [12,

15] and inverse reinforcement learning (IRL) [9, 10, 19, 21]

is widely used recently. In IRL, features that might signif-

icantly influence the behaviors are extracted [10, 21]. It is

better to prepare a set of appropriate features before apply-

ing IRL. The analysis in this paper can be considered as an

exploration of features in IRL.

Through the experiments, we confirmed that the metrics

changed as drivers gained driving experience. We consider

that these metrics are useful as the features that represent

the difference of expert and novice drivers to model the eye-

gaze behavior. For example, the proportion of focusing time

to blind corners increased as shown in Figure 8(b). It in-

dicates that while the novice drivers looked mostly at the

pylons, they paid much attention to blind corners as they

gained driving experience. If we can model these behav-

iors, we consider that the model of novice drivers weights

the feature of pylons mostly, while that of expert drivers

weights the feature of pylons and blind corners in a good

balance referring to the proportion of focusing time on py-

lons and blind corners as features.

0.0
0.2
0.4
0.6
0.8
1.0

�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
	

�
�
�



�
�
�
�

�
	
�
�

�
	
�
�

�
	
�



�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
	

�
�
�



�
�
�
�

�


�
�

�


�
�

�


�



Pr
op

or
ti

on
 o

f f
oc

us
in

g 
ti

m
e

Distance to blind corners [m]

������� ����	��� �����
��	 ��������
 ���������

(a) The first row pylon.
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(b) The second row pylon.
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(c) The third row pylon.
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(d) The fourth row pylon.

Figure 10: Proportion of focusing time to the pylons.

7. Conclusion

We analyzed how driver experience affects eye-gaze be-

havior for robotic wheelchair operation, as an initial study

for modeling the eye-gaze behavior of experienced drivers.

First, we established hypotheses for eye-gaze behavior on a

narrow course with blind corners and proposed metrics for

analyzing eye-gaze behaviors in 3D space. Then, we con-

ducted a driving experiment using a robotic wheelchair, in

which the participants were inexperienced drivers. As a re-

sult, we confirmed our hypotheses:
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• A novice driver’s eye-gaze behavior is to stay on the

drivable path.

• An experienced driver’s eye-gaze behavior is well bal-

anced between staying on the drivable path and taking

caution to pedestrians suddenly running out.

Future works will include an extension of the dataset,

comparison of results between previous 2D and our 3D

analysis methodologies, and analysis in various situations

and environments. We also plan to apply IRL [9, 19, 21] and

Autoregressive Input-Output HMM (AIOHMM) [1, 8] to

model eye-gaze behavior of experienced robotic wheelchair

drivers.
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