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SUMMARY

The authors propose a new method for quickly
searching for a specific audio or video signal to be detected
within a long, stored audio or video stream to determine
segments that contain signals that are nearly identical to the
given signal. The Time-series Active Search (TAS) method
is one of the quick search methods that have been proposed
previously. This signal searching technique based on histo-
grams extracted from the signals had implemented quick
searching by local pruning, that is, omitting comparisons of
segments for which searching was unnecessary based on
similarities in the vicinity of the matching window. In
contrast, the proposed technique implements significantly
quicker searching by introducing global pruning, which
looks at the entire signal time-series according to histogram
classifications based on similarities of the entire signal to
eliminate segments that need not be searched, in addition
to local pruning. In this paper, the authors present a detailed
discussion of the relationship between the degree of global
pruning and the accuracy that is guaranteed. For example,
the authors showed through experiments that when 128-di-
mension histograms were classified to 1024 clusters, the
proposed technique achieved a search speed approximately
9 times that of TAS while preserving the same degree of
accuracy. The preprocessing calculation time increased by
approximately 1% of the time for playing the signal.
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1. Introduction

Lately, there has been a growing demand for tech-
niques that enable a massive database of audio or video
signals to be quickly and accurately searched for a specific
audio or video signal.

Numerous techniques related to audio or video re-
trieval or searching have been proposed. Many of these
techniques specify some kind of condition related to the
contents of the audio or video signal to be detected to obtain
specific audio or video signals that satisfy that condition
from a database or long signal stream [1-5]. In this paper,
this search method is referred to as content-based search.

On the other hand, in this paper, we propose a method
for quickly and accurately searching for a specific audio or
video signal to be detected (reference signal) within a
massive stored audio or video stream (stored signal) to
determine segments that contain signals that are nearly
identical to the reference signal. In this paper, this search
method is referred to as a similarity search. Similarity
search techniques are widely applied to stored television or
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radio broadcasting data to detect or compile statistical
information about specific commercials or tunes and to
prevent the illegal use of music or video titles on the
Internet.

The Time-series Active Search method, (hereafter
TAS) which is a histogram-based signal search method, has
been proposed as one of these techniques [6]. TAS imple-
mented quick searching by omitting comparisons of seg-
ments for which searching was unnecessary based on
similarities in the vicinity of the matching position. In this
paper, this acceleration technique is referred to as local
pruning. When feature extraction had been performed in
advance, TAS enabled a segment identical to a 15-second
audio or video fragment to be detected from 60 hours of
stored audio or video signals within approximately 1 sec-
ond. However, faster searching is required to search much
more massive amounts of stored signals.

Since TAS uses only similarities in the vicinity of the
matching point, even if a segment that is totally dissimilar
to the reference signal continues for a long time within the
stored signal, for example, matching cannot be completely
omitted for that segment. As a result, a problem with TAS
is that the search time increases according to the length of
the stored signal, regardless of the similarity between the
reference signal and entire stored signal.

Reducing the search range by taking into considera-
tion similarities of the entire stored signal is indispensable
for resolving this problem.

Many means of reducing the search range have been
published mainly in fields related to database techniques
for retrieving still images. For example, techniques that use
hyperboxes [7], hyperspheres [8], or the common portions
of hyperboxes and hyperspheres [9] for hierarchically
classifying data in advance to construct a search tree for
quickly retrieving similar images are typical. Since these
techniques basically attempt to minimize the amount of
search-time calculations regardless of the amount of pre-
processing calculations, they are highly effective when the
dimensions of the feature quantities extracted from the
signal are relatively low such as for the retrieval of still
images. However, these methods are not necessarily effec-
tive for audio or video searches, because the amount of
calculations required for preprocessing increases explo-
sively, or an enormous storage capacity is required to save
the search tree as the dimensions of the feature quantities
or the signal scale increases.

In contrast, in this paper, we propose a search tech-
nique that introduces global pruning for efficiently reduc-
ing the search range by taking into consideration
similarities of the entire stored signal according to preproc-
essing that does not require a massive amount of calcula-
tions or a massive amount of storage in addition to the local
pruning performed in the Time-series Active Search
method. The remainder of this paper is organized as fol-
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lows. Section 2 presents an overview of TAS. Section 3
describes the proposed method. Section 4 shows the effec-
tiveness of the proposed method in experiments. Section 5

summarizes the paper.

2. Time-Series Active Search Method

2.1. Overview of the algorithm

Figure 1 shows an overview of the Time-series Active
Search method. Since algorithm details can be found in
Refs. 6 and 10, only important points are presented here.

First, feature vectors are calculated from both the
reference signal and stored signal. Next, windows having
the same length are applied to both the reference signal and
stored signal to create histograms by classifying feature
vectors within the windows. The existence of a reference
signal is determined by whether or not a similarity value
indicating the degree of similarity between the histograms
exceeds a search threshold value that was setin advance. At
this time, a time width (skip width) for which searching can
be skipped in the time direction while guaranteeing that no
false dismissals will occur can be obtained from the simi-
larity and search threshold values, and searching proceeds
by shifting the window that is applied to the stored signal
forward in time by that width.

The feature vectors are calculated for both audio and
video signals by using a similar method to the one described
in Ref. 10. Histogram intersection [11] is used to measure
the degree of similarity between histograms. Histogram
intersection is defined by the equation
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where Hg and Hy are the histograms for the reference signal
and stored signal, hg; and hg; are the numbers of feature
vectors in the i-th dimension of each histogram, L is the
number of histogram dimensions, and D is the number of
feature vectors within the window.

The skip width w is obtained by using the following
expression from a study related to the upper bound of the
similarity values [6]:

ﬂOOl'(.D(01 — Sl)) +1 (lf S1 < 91)
1 (otherwise)

where floor(x) means the greatest integer less than x, and 6,
denotes the search threshold value.

Histogram intersection is used to measure the degree
of similarity for the following reasons. (1) The calculation
is easy. (2) The skip width is obtained by a simple calcula-
tion. (3) It provides a high search accuracy in a noisy
environment.

2.2. Effectiveness of histogram intersection

To check the validity of histogram intersection as a
measure of similarity, we used acoustic signals to perform
experiments comparing histogram intersection and the L,-
distance (Euclidean distance) between histograms, which
is generally used as a discrimination measure, with respect
to the search accuracy. The L,-distance is defined as fol-

lows:

L
dz(HR,Hs) déf Z IhRi - hs;’lz (3)

i=1

First, we captured a 20-minute audio signal contain-
ing no repetitions in the computer two separate times. We
Jet a fixed time segment extracted from a random location
in one of these audio signals be the reference signal and let
the other audio signal be the stored signal. Then, from each
captured audio signal, we performed feature extraction
according to the method described earlier. We also per-
formed the experiment when white Gaussian noise was
added to the stored signal.

In this experiment, we set the number of histogram
dimensions and the SN ratio when noise was superimposed
as parameters. We searched by repeating the Time-series
Active Search method 100 times under the same experi-
mental conditions and measured the search accuracy. We
set the search threshold value for which the precision and
the recall were equal and evaluated the accuracy by using
the precision (= recall) at that search threshold value. The
precision here is the percentage of correct matches among
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Fig. 2. Noise tolerances of two distance measures.

the matches that were output as search results, and the recall
is the percentage of matches that were output as search
results among matches that should be found.

Figure 2 shows the experimental results. From this
figure, it is apparent that at 35 dB or less, histogram inter-
section obtains a search accuracy that is approximately 10
to 15% higher than L,-distance for every number of dimen-
sions. If the number of dimensions is 128, histogram inter-
section obtains a search accuracy of at least 99% for SN
ratios up to 20 dB.

From the above experiment, it is readily apparent that
histogram intersection is superior to L,-distance with re-
spect to the search accuracy.

3. Proposed Method

3.1. Overview of the algorithm

Figure 3 shows an overview of the proposed method.
In Fig. 3, the two rectangles represent the stored signal, and
each division of the horizontal axis scale represents one
signal frame.

With TAS, the maximum skip width is upperbounded
by the number of the feature vectors within the window, or
in other words by the window width, according to Eq. (2).
However, with the proposed method, the entire stored signal
is checked during preprocessing before the search is per-
formed in order to find intervals within the stored signal
that have a low degree of similarity to the reference signal.
This enables the search range to be significantly reduced.

Figure 4 shows the processing procedure.

The processing is classified to preprocessing and
searching. Preprocessing can be performed before a spe-
cific reference signal is assigned.
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Fig. 3. Overview of the proposed method.

The preprocessing consists of the following four
steps.

(1) Calculate feature vectors from the stored signal.

(2) Create histograms by applying the window to the
feature vectors calculated in step (1) while sliding the
window one frame at a time. '

Time-series Active Search Proposed method

[ Extract features from the stored signal |

-

Create histograms
for the stored signal
by shifting a fixed-length
window frame by frame

-

I Divide the histogram space l

¥
Classify the histograms
according to the divisions
I Preprocessing
v Searching v
Extract features from the reference signal l
[ Create histogram(s) for the reference signal I
Perform global pruning
based on
the histogram classification
Histogram matching *
(while creating necessary Histogram matching
histograms for the stored (for only
signal) the remaining sections)

Fig. 4. Processing procedure.
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(3) Divide the histogram space.
(4) Classify the histograms according to the divided

space.

Let the time window length be the assumed reference
signal length (for example, 15 seconds). Also, the histo-
grams are created by quantizing the feature vectors by using
a certain vector quantization (VQ) algorithm and counting
the number of feature vectors for each VQ codeword.

Hereafter, the histograms that were created from the
stored signal will be referred to as the stored histograms,
and the sequence of the stored histograms will be referred
to as the stored histogram sequence. With TAS, the size of
the window can vary for each given reference signal length
since the stored histograms are not created in advance.
However, with the proposed method, the size of the window
is fixed because the stored histograms must be created in
advance.

The search processing consists of the following four
steps.

(1) Calculate feature vectors from the reference sig-
nal.

(2) Create histograms from the feature vectors calcu-
lated in step (1).

(3) Perform global pruning by using the histogram
classifications.

(4) Perform histogram matching based on TAS only
for histograms that belong to selected classes.

The histograms that were created from the reference
signals will be referred to as reference histograms.

With TAS, stored histograms were created during
histogram matching only at locations where matching was
required. With the proposed method, since stored histo-
grams are created at all locations during preprocessing,
matching can also be performed during search processing
by using these previously created stored histograms. How-
ever, this requires a large storage capacity to save the stored
histograms in advance, and searching is difficult for a long
stored signal. As a result, in this method, histograms are
created during preprocessing only to obtain the time inter-
vals that belong to each histogram classification. During
search processing, new stored histograms are created at
required locations during histogram matching in a similar
manner as for TAS.

In addition to creating histograms for the saved signal
prior to searching during preprocessing step (2), the pro-
posed method classifies those histograms in advance during
preprocessing steps (3) and (4). It can then perform search
processing faster than TAS by reducing the search range
during search processing step (3).

The following sections describe the main global
pruning techniques in detail.




3.2. Dividing the histogram space

The LBG algorithm [12], for example, is used for the
codebook training algorithm during vector quantization
(VQ) when dividing the histogram space. The L,-distance
is used as the VQ distance measure.

3.3. Classifying histograms

Figure 5 shows an overview of the histogram classi-
fication scheme.

The VQ algorithm is used to classify each of the
histograms that were created in advance for the stored
signal. In other words, each histogram is assigned to the
class having the representative histogram that is the mini-
mum L,-distance from that histogram. A representative
histogram indicates one corresponding to a VQ code word.
When the LBG algorithm is used for VQ codebook training,
the representative histogram becomes the centroid of the
training sample to which the same code word was assigned.
The histogram classification created by the process de-

scribed above is called a cluster.
Since the processing described in this section and the

previous section does not require the reference signal, it can
all be performed prior to searching.

3.4. Global pruning

3.4.1. Overview

The processing described in this section is performed
after the reference signal is assigned. It uses the clusters that
were obtained by the processing described in previous
sections.

The reference histogram is classified according to the
histogram classification scheme described in Section 3.3
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Fig. 5. Histogram classification scheme.
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whose distance from the reference histogram
is smaller than the selection threshold

Fig. 6. Clusters selected according to global pruning.

into a cluster (a reference cluster) having a representative
histogram at minimum Ly-distances. Next, clusters that
satisfy a certain selection condition are selected, and histo-
grams that are classified in the selected clusters are subject
to searching. The stored histograms that must be searched
are determined in this way, and histogram matching is
performed based on TAS only for those histograms.

The important point here is deciding how to specifi-
cally determine the cluster selection condition. This is
described in the next section.

3.4.2. Cluster selection condition

As the cluster selection condition, we check whether
or not a cluster can contain a histogram for which the
L,-distance from the reference histogram is less than the
selection threshold, which is a predetermined value (Fig.
6). Only clusters that satisfy this condition are selected.
Those that do not satisfy it are not selected. The decision
equation for this selection condition is derived below.

First, we consider the clusters adjacent to the refer-
ence cluster.

Figure 7 represents a situation in which an L-dimen-
sional histogram space is sliced by a plane on which the
three points R, C,, and C, reside, where R represents the
reference histogram, C| the representative histogram of the
reference cluster, and C, the representative histogram of a
cluster adjacent to the reference cluster. dg,, dgy, and d|,
indicate the L,-distances between R and C), R and C,, and
C, and C,, respectively.

The objective here is to derive an equation for deter-
mining whether or not there may exist a histogram for
which the L,-distance from the reference histogram exceeds
the selection threshold value 6, among the histograms that
belong to the cluster for which C, is the representative
histogram.
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Fig. 7. Cluster selection condition.

A histogram having a distance from the reference
histogram R that does not exceed the selection threshold
value 0,, or in other words, a histogram that is inside a
hypersphere of radius 0, centered on R, is subject to search-
ing. Therefore, when the selection threshold value 0, is
greater than the shortest distance dy between the reference
histogram and the cluster, the cluster having C, as the
representative histogram should be selected.

From Fig. 7, the following equations hold:

2 2 1 2
% = %, — (§d12 _ d,,)
1 2
= %y — (§d12 + do) @)

The right-hand sides of these two equations can be equated
and solved to obtain dy:

dao — diy
— %r2 —dm )
de 2d;2

When a cluster is not adjacent to the reference cluster,
the minimum distance between the cluster and the reference
histogram is always greater than the value dj calculated by
using Eq. (5). In other words, if clusters for which d is less
than or equal to the selection threshold value 6, are selected,
every cluster that should be selected will be selected.

Therefore, according to the above discussion, clus-
ters that satisfy the following equation should be selected:

2 2
dR2 _ de

%di (©)

02 2
34.3. Setting the threshold value based on
upper and lower bounds of the
similarity value
With the proposed method, two independent thresh-

old values, namely, a search threshold and a selection
threshold, must be set. The range in which accuracy is
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theoretically guaranteed varies according to the relation-
ship between the search threshold value and selection
threshold value. Therefore, we present guidelines below for
deriving the relationship between the two threshold values
and the range in which accuracy is theoretically guaranteed
based on the relationship that holds between histogram
intersection and the Ly-distance to determine the selection
threshold value 6, from the search selection threshold value
0, so that the desired accuracy range is assigned.

In this context, “guaranteeing accuracy” means de-
tecting all locations within the stored signal for which the
similarity value (distance value) to the reference signal
exceeds the threshold value (is less than the threshold value)
and not detecting any location for which it is less than or
equal to the threshold value (greater than or equal to the
threshold value).

The L,-distance

def

L
di = di(Hr,Hs)= ) |hpi —hsi] (D)
i=1

can be used to represent the histogram intersection [Eq. (1)]
as follows:

1
$1 = 51(Hr, Hs) =1~ 5dx (8)

The relationship

min(z,y) = %{(l‘ +y) — |z —yl}

is used for the transformation from Eq. (1) to Eq. (8). Also,
the following relationship generally holds between the L,-
distance and the L,-distance:

d2 = d2(Hgr, Hs) < d1 £ VLd, ©)]

From Egs. (8) and (9), the following relationship is ob-
tained:

$1) <d2 £2D(1 - S) (10)

2D

2= -

VL
When the selection threshold value 0, satisfies

62 = 2D(1 - 6;)

then from Eq. (10), all histograms that satisfy S, = 6, will
satisfy d; < 8,. In other words, all histograms that satisfy
S) 2 9, can be selected without missing any even if global
pruning is performed. On the other hand, when the selection
threshold value 6, satisfies




2D
0, < —\/—Z(l —61)

then from Eq. (10), all histograms that satisfy d; < 6, will
satisfy S;>0,. In other words, histograms that satisfy
d, <0, are always detected even if local pruning is per-
formed.

As the size of the search threshold value 8, is reduced,
the search range is significantly reduced due to global
pruning, and the search speed can be expected to increase.
However, reducing the search range too much creates a
situation in which search misses easily occur. In addition,
since the accuracy guarantee range approaches the accuracy
guarantee range of the L,-distance measure, the search
accuracy is expected to decrease from the fact that the
L,-distance measure has a lower search accuracy than his-
togram intersection (Section 2.2).

Therefore, in this paper, we introduce the parameter
p to define an equation for determining the selection thresh-
old value from the search threshold value, and vary p to
check the relationship between the search speed and search
accuracy. The equation for determining the selection
threshold value is

2D

= iy (11)

02 (1-61).

Figure 8 shows how the range in which accuracy is
guaranteed varies as p varies. As in Figs. 6 and 7, the
histogram space is represented two dimensionally for sim-
plicity. v

The region in which the similarity to the reference
histogram (histogram intersection value) exceeds the
search threshold value 8, forms a regular 2"-faced polyhe-
dron in the L-dimensional space. For a two-dimensional

region where similarity
value exceeds the

search threshold 0, h ram

Fig.8. Relationship between the search threshold value 8,
and the selection threshold value 8, when p =0 andp = 1.
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space, this is a square as shown in Fig. 8. When p =0, then
8, = 2D(1 - 0,), and the region where the (L) distance to
the reference histogram is less than the selection threshold
value 0, forms a hypersphere that exactly circumscribes the
region in which the similarity to the reference histogram
exceeds the search threshold value. In other words, the
selection threshold value at p = 0 is the minimum selection
threshold value for which accuracy is guaranteed based on
the L,-distance measure. Also, when p = 1, then 6; =
DALY(1 - 0,), and the region where the distance to the
reference histogram is less than the selection threshold
value 0, forms a hypersphere that is exactly inscribed in the
region in which the similarity to the reference histogram
exceeds the search threshold value.

According to the above investigation, p controls the
radius of the hypersphere formed by the region in which the
distance to the reference histogram is less than the selection
threshold value. Therefore, we will refer to p as the radius

parameter hereafter.

4. Experiments

4.1. Threshold value settings

To show the effectiveness of the proposed method,
we measured both the time required to search for a specific
15-second audio signal from 200 hours of audio signal data
and the search accuracy. The computer used for the experi-
ments was a PC with a Pentium III 1-GHz CPU.

First, we captured the audio signal from a TV broad-
cast, encoded it in MP3 format, and recorded it on an
external storage unit. We used MP3 format here because the
storage size is smaller than for the source signal. In addition
to a one-time capture of 200 hours for use as the stored
signal, we similarly captured the audio signal from another
TV station and recorded 1000 different 15-second signals
for use as the reference signal. In both cases, we captured
the source signal in monaural using a 32-kHz sampling
frequency and linear 16-bit quantization accuracy, and we
performed the MP3 encoding using a bit rate of 56 kbit/s.

We performed feature extraction from the captured
audio signals by using the same method as used in Ref. 6.
The feature vector time width was 60 ms, and the time step
was 10 ms. We created histograms by using a codebook of
size L, which was created in advance, for the vector quan-
tization of each feature vector. We classified the sequence
of stored histograms into C clusters according to the proc-
essing described in Sections 3.2 and 3.3, and we set the
search threshold value 6, to 0.85.

To evaluate changes in the search accuracy and search
speed due to changes in the radius parameter p, we varied
p from O to 2 and measured the time required for searching
and the search accuracy. In the experiments in this section,




we assumed that the number of histogram bins was I, = 128
and the number of clusters was C = 1024.

In the following discussion, all times are measured in
terms of CPU time, and the average value when measure-
ments were performed for 1000 reference signals is shown.

(1) Feature extraction time

The CPU time required to perform feature extraction
from the 200-hour stored signal and 15-second reference
signal while performing MP3 decoding was 7 hours, 34
minutes, and 35 seconds (approximately 4% of the playing
time).

(2) Vector quantization time

The CPU time required to perform vector quantiza-
tion of the feature vector sequences that were extracted
from the 200-hour stored signal and 15-second reference
signal was 12 minutes and 30 seconds (approximately 0.1%
of the playing time). This was obtained by measuring the
time for processing in memory after all feature vectors were
loaded into memory.

(3) Histogram classification time

The CPU time required for classifying the histograms
that were created from the 200-hour stored signal and
15-second reference signal was 1 hour, 30 minutes, and 37
seconds (approximately 0.8% of the playing time). This
was obtained by measuring the time for processing in
memory while sequentially creating the histograms by
loading the sequence of feature vectors after vector quanti-
zation had been performed for all vectors.

(4) Pruning time

Global pruning is the search for the centroid of the
cluster with the minimum distance from the reference his-
togram, the calculation of the selection condition decision
equation (6), and the selection of classified histograms. The
amount of calculations in the above procedure depends only
on the number of histogram dimensions L and the number
of clusters C. As a result, the pruning time shows a fixed
value regardless of the size of the radius parameter p.

In the experiments in this section (L = 128 and C =
1024), the pruning time was 0.02 s. As shown later, this will
be approximately 5 to 50% of the search execution time.
However, if we ignore the operation for selecting preclas-
sified histograms, the pruning time is also fixed regardless
of the length of the stored signal. Therefore,. it can be
ignored when the stored signal is even longer.

(5) Search execution time

Figure 9 presents the experimental results.
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Figure 9 shows results that compare the search exe-
cution times of TAS and the proposed method. The hori-
zontal axis is the radius parameter p, and the vertical axes
show the search execution time on the left and the search
time reduction rate on the right. The search time reduction
rate indicates the degree to which the proposed method was
able to reduce the search execution time relative to TAS. It
is defined as the ratio of the search execution time for TAS
relative to the search execution time for the proposed
method.

As shown in Fig. 9, when p is greater than 0.4, the
search execution time for the proposed method gets shorter
as the radius parameter increases. When p = 1.0, the search
is executed in approximately 0.3 s, and when p = 2.0, it is
executed in approximately 0.025 s. At this time, the pro-
posed method can execute the search approximately 9 times
faster (p = 1.0) or approximately 110 times faster (p = 2.0)
than TAS.

From p = 0 to p = 0.4, the search execution time of
the proposed method does not decrease monotonically as p
increases. The reason for this is as follows.

As the radius parameter p increases, the amount of
the stored signal that must be searched decreases monotoni-
cally. However, when a relatively large proportion of the
entire stored signal is occupied by the stored signal that
must be searched, there can often exist a large number of
intervals that must be searched with short intervals between
them. In this situation, when matching and skipping is
performed based on TAS for each interval, the probability
that a location that had been skipped by the conventional
TAS method falls in the gap between the intervals that must
be searched increases. In other words, the skip width may
end up being reduced.

3.0 140
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Fig. 9. Relationship between the radius parameter and
the search time required for searching a stored audio
signal of 200 hours.




Besides the time required for searching, time is also
required for:

(6) Creating the codebook to be used for vector
quantization of the feature vectors
(codebook creation time), and

(7) Dividing the histogram space (histogram space
division time).

However, if codebook creation and histogram space divi-
sion are performed in advance by sampling only a sufficient
number from among the various types of signals, these
kinds of processing need not be executed again for each
stored signal. As a result, in this paper, the codebook
creation time and histogram space division time are not
included in the time required for searching.

(8) Search accuracy

Figure 10 presents the experimental results.

Figure 10 shows the results of measuring the search
accuracy for the proposed method. The horizontal axis is
the radius parameter p, and the vertical axis the search
accuracy. The search accuracy was evaluated according to
the precision when the search results for TAS were assumed
to be correct answers.

As shown in Fig. 10, the search accuracy begins to
drop at p = 1.0, and the accuracy decreases to 85% at p =
2.0.

4.2. Search parameters

To check the relationship between the number of
histogram dimensions L and number of clusters C and the

1000

900 |

search accuracy [%)]
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radius parameter p

Fig. 10. Relationship between the radius parameter and
search accuracy.
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search accuracy and search speed, we varied L and C and
measured the time required for searching and the search
accuracy. In this section, the audio signals that were used
and the feature extraction parameters are the same as those
used for the experiments in the previous section. For the
search threshold value 8,, we set 0, =0.85 (L =128), 8, =
0.8 (L = 256), and 0, = 0.75 (L = 512). For the radius
parameter p, we set p = 1.

Since (1) feature extraction time, (2) vector quantiza-
tion time, and (3) histogram classification time are the same
as described in the previous section, they are omitted here.

(4) Pruning time

Figure 11 shows the experimental results.

Figure 11 shows the results when the pruning time
for the proposed method was measured with the number of
histogram dimensions as a parameter. The horizontal axis
is the number of clusters, and the vertical axis the pruning
time.

As shown in Fig. 11, the pruning time for each
number of dimensions increases almost linearly relative to
the number of clusters. Also, the pruning time tends to
increase as the number of dimensions increases. For exam-
ple, when the number of dimensions is 128 and the number
of clusters is 1024, the pruning time is 0.02 s.

(5) Search execution time

Figure 12 shows the experimental results.

Fig. 12 shows comparison results of the search exe-
cution times of TAS and the proposed method with the
number of histogram dimensions as a parameter. The hori-
zontal axis is the number of clusters, and the vertical axis
the search execution time.
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Fig. 11. Relationship between the number of clusters
and pruning time for a stored audio signal of 200 hours.
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As shown in Fig. 12, the search execution time for
the proposed method decreases as the number of clusters
increases, and when the number of clusters is 1024, the
search is executed in less than 1 second for every number
of dimensions. Also, with both methods, the search execu-
tion time tends to increase as the number of dimensions
increases.

(6) Search accuracy

Figure 13 presents the experimental results.

Figure 13 shows the measurement results for the
search accuracy of the proposed method. The horizontal
axis is the number of clusters, and the vertical axis the
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Fig. 13. Relationship between the number of clusters
and search accuracy.
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search accuracy. The search accuracy was evaluated accord-
ing to the precision when the search results for TAS were
assumed to be correct answers.

Asshown in Fig. 13, a high search accuracy of at least
98% was obtained for every number of dimensions. In
particular, when the number of dimensions was 128, a
100% search accuracy was obtained for every number of
clusters. In other words, the same search accuracy was
obtained as for TAS.

As an example that demonstrated good performance
in these results, Table 1 shows measurement results when
the number of histogram dimensions L = 128, number of
clusters C = 1024, and radius parameter p = I.

4.3. Video signals

To show that the proposed method can also be applied
to video signals, we investigated the time required to search
for a specific 15-second video signal from 24 hours of video
signal data and the search accuracy.

First, we played a 24-hour tape (VHS HiFi, triple
mode) that was recorded on a home VCR to capture the
video on a workstation. In addition to a one-time capture of
24 hours for use as the stored signal, we randomly selected
and played 10 different 15-second signals from the same
tape and captured them separately for use as the reference
signal. In both cases, we captured the video signal using a
29.97-Hz frame rate, Motion JPEG, and a 320 x 240 screen
size. We performed feature extraction from the captured
video signals by using the same method as was used in Ref.
10. We set W = 6 (3 equal divisions in the horizontal
direction and 2 equal subdivisions in the vertical direction)
as the number of subdivisions for feature extraction.

For the number of histogram dimensions, we set L =
128, and for the number of clusters, we set C = 1024. Also,
for the search threshold value 8,, we set 8, = 0.8 so that both
the precision and the recall when TAS was used would be
100%. For the radius parameter, we set p = 1.

Table 2 shows measurement results for the search
execution time and match frequency. The average value
when measurements were performed for the 10 reference
signals are shown for the search execution time and match

Table 1. Experimental results for a 200-hour stored

audio signal (summary)

Search execution time Search time reduction rate
Proposed method TAS method
306 ms 2847 ms 9.3
Match frequency Match frequency reduction rate
Proposed method TAS method
13,256 times 112,120 times 8.5




Table 2. Experimental results for a 24-hour stored video
signal (summary)

[ Search execution time Search time reduction rate
Proposed method  TAS method
4.2 ms 90.0ms 214
Match frequency Match frequency reduction rate
Proposed method  TAS method
1,153 times 8,597 times 7.5

frequency. The experiments in this section verified that the
search results were correct for all 10 reference signals.
These results demonstrated that the proposed method is also
effective for video signals.

5. Conclusions

In this paper, we proposed a search method that
introduces global pruning in addition to the local pruning
used in the Time-series Active Search method. We intro-
duced the radius parameter p to determine the selection
threshold value from the search threshold value during
global pruning and showed experimentally that when p is
increased, the search time and match frequency are reduced
while maintaining the search accuracy. We also showed
experimentally that when the number of clusters is in-
creased, the search execution time is reduced while main-
taining the search accuracy. In particular, when the number
of histogram dimensions was set to 128 and the number of
clusters was set to 1024, the search time was reduced to
approximately 1/9 of the time for the conventional method
when using p = 1. In addition, we showed that the proposed
method, like the Time-series Active Search method, can be
applied to video signals as well as audio signals. For video
signals, when the number of histogram dimensions was set
to 256 and the number of clusters was set to 1024, the search
time was reduced to approximately 1/20 of the time for the
conventional method when using p = 1.

In the future, we plan to continue investigating tech-
niques that will enable even quicker searches of more
massive time-series signals while preserving search accu-
racy.
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